Dual energy CT (2)

V jednom z předchozích článků jsme si řekli, jakým způsobem řeší jednotliví výrobci dual energy CT. Jedná se o získání informace o součinitelích zeslabení při dvou energiích, typicky nízké energii (napětí 70-80 kV) a vysoké energii (napětí 140-150 kV). Jsou-li k dispozici informace o součiniteli zeslabení pro daný voxel pro dvě energie, je možné lépe stanovit složení daného voxelu. Primárně nejde o stanovení konkrétního složení, tj. výsledkem není informace, že voxel obsahuje uhlík, vápník atd, ale provedení dekompozice zeslabení v daném voxelu na zastoupení dvou materiálů, typicky vody a jódu, na základě jejichž zeslabení lze definovat typ materiálu nebo tkáně. Lze tak odlišit např. druhy ledvinových kamenů. V tomto článku si řekneme, jak probíhá ona zmíněná dekompozice. Začněme však ještě o něco dříve a to zavedením materiálů, které se v těle pacientů vyskytují a které je potenciálně možné použít pro dekompozici.

ICRU definuje čtyři základní materiály, které se vyskytují v těle pacientů: měkká tkáň, kostní tkáň, kontrastní látky a kovové implantáty.

Měkká tkáň v těle pacientů má elementární složení blízké vodě, obsahuje převážně atomy vodíku a kyslíku (efektivní protonové číslo cca Z=7). Hustota měkké tkáně je většinou v rozsahu 0,9-1,1 g/cm3. Zdravá a patologická tkáň se mohou lišit v hustotě přibližně o 10-20 mg/cm3, tj. pouze 0,01-0,02 g/cm3.

Kostní tkáň je druhou skupinou materiálů. Skládá se z hydroxyapatitu v různých koncentracích. Kostní tkáně mají vyšší hustotu než měkké tkáně, typicky je to 1,5-2,0 g/cm3. Jak vyšší hustota této tkáně, tak i obsah prvků s vyšším atomovým číslem (Z=20 pro vápník, Z=15 pro fosfor) způsobují, že součinitel kostní tkáně je podstatně vyšší než měkké tkáně. Rozdíl mezi zeslabením kostní tkáně a měkké tkáně je vyšší pro nižší energie rtg svazku.

Kontrastní látky představují třetí skupinu materiálů. Kontrastní látky se používají v těch případech, kdy je potřeba zvýšit kontrast mezi měkkými tkáněmi nebo tehdy, jde-li o angiografické vyšetření. Typicky používané kontrastní látky obsahují jód (Z=53) nebo gadolinium (Z=64), tedy prvky s vysokým atomovým číslem. Statisticky se dá říct, že kontrastní látka je použita u více než 50% všech CT vyšetření. Téměř ve všech případech se jedná o jódovou kontrastní látku, ale u alergických pacientů lze použít i gadoliniovou kontrastní látku, která je však běžná pro MR vyšetření. Nadále bude pojmem kontrastní látka myšlena pouze jodová kontrastní látka.

Kovové implantáty představují čtvrtou skupinu materiálů. Jedná se převážně o titanové náhrady kloubů nebo kovové výplně zubů. Kovové implantáty často degradují kvalitu obrazu vznikem streak artefaktů, které je možné alespoň z části redukovat postprocessingem.

V další části kovové implantáty jako materiál vyskytující se v těle pacientů pomineme a budeme brát v potaz pouze měkkou tkáň, kostní tkáň a kontrastní látky.

Podstatou výše zmíněné dekompozice součinitele zeslabení v daném voxelu je rozložení součinitele zeslabení v daném voxelu na příspěvek fotoefektu a Comptonova rozptylu dvou známých materiálů, typicky měkké tkáně a kostní tkáně nebo měkké tkáně a kontrastní látky, za podmínky znalosti rtg spekter. Jedná se o řešení následující rovnice:

(1)kde indexem 1 je označen první materiál a indexem 2 druhý materiál. Hmotnostní součinitel zeslabení (µ/ρ)_i ve voxelu r je lineární kombinací zastoupení fotoefektu a Comptonova rozptylu pro tento materiál i a je závislý na energii. ρ_i je hustota daného materiálu. Rovnici (1) lze zjednodušeně přepsat jako:

(2)kde f_1(E) a f_2(E) je kombinace součinitele zeslabení pro fotoefekt a Comptonův rozptyl pro materiál 1 a 2 (o závislosti těchto součinitelů je pojednáno v tomto článku). c_1(r) a c_2(r) je koncentrace materiálu 1 a 2 v pixelu r. Nechť je materiálem 1 voda a materiálem 2 jód. Pak pro f_1(E) a f_2(E) platí:

(3)

A následně použitím (2) a (3) dostáváme:

(4)Mějme kost, jejíž součinitel zeslabení chceme napsat jako lineární kombinaci zeslabení vody a jodu, tedy chceme provést dekompozici. Pro názornost je na obr. 1 ukázka součinitelů zeslabení pro všechny tři materiály:

Obr. 1: Součinitele zeslabení pro vodu, kost a jód

U dekompozice se snažíme součinitel zeslabení kosti napsat jako kombinaci součinitele zeslabení vody a jódu. Dosadíme do rovnice (4) a dostáváme:

(5)Součinitel µ_voda a µ_jod je známý (provádíme rozklad neboli dekompozici do těchto dvou materiálů, proto je považujeme za známé), µ_kost je známý z naměřených CT dat, takže je potřeba naleznout koeficient c_voda a c_jod. Tuto rovnici řešíme pro dvě spektra, nechť mají maximální energie 80 keV a 140 keV. Rovnice jsou tedy dvě, všechny tři součinitele zeslabení jsou známé (µ_voda a µ_jod známe na začátku, µ_kosti dostaneme ze získaných dat). Tedy dvě rovnice se dvěmi neznámými (neznámé jsou uvedeny tučně):

(6)Výsledek dekompozice pro jeden voxel může být např. toto:

(7)Rovnice (7) říká, že 1 cm materiálu voxelu, pro který tato rovnice platí, zeslabuje stejně jako 0,88 cm vody a 0,18 cm jodu.

CT spektra s maximální energií 80 keV i 140 keV mají efektivní energii vyšší než 35 keV, tj. jedná se o energii za K-hranou jodu (ta je na 33 keV). Pro co nejlepší dekompozici je vhodné mít co nejodlišnější spektra, tedy spektra dvou odlišných energií. Nejde však o maximální energii, ale o efektivní energii spektra, která úzce souvisí s celým spektrem. Aby byly efektivní energii dvou spekter co nejvíce rozdílné, je žádoucí, aby překryv spekter byl co nejmenší, tedy spektrální separace co největší. O spektrální separaci pro jednotlivá řešení výrobců dual energy CT si řekneme v jednom z dalších článků.

Použitá literatura:
Johnson TRC. Dual energy CT in clinical practice. Heidelberg: Springer, c2011. Medical radiology. ISBN 3642017401
Heismann B, Schmidt B, Flohr T. Spectral computed tomography. Washington: SPIE Press, 2012. ISBN 978-0-8194-9257-9

2 komentáře u „Dual energy CT (2)

  1. Kristýna

    Dobrý den, vážená paní doktorko.
    Právě jsem narazila na Vaše stránky a musím přiznat, že jsem opravdu nadšená. Mně, studentce 3. ročníku oboru Radiologický asistent, přijdou Vaše články velmi vhod. Všechno je sepsané přehledně, zajímavě a jsem si jistá, že před státnicemi sem ještě mnohokrát zavítám, protože takto jasně sepsaná problematika mi ušetří spoustu trápení s hledáním informací k závěrečným otázkám. I ten slovník pojmů je perfektní.
    Děkuji za tento skvělý web.
    Mějte krásný den.

    1. Lucie Súkupová Autor příspěvku

      Dobrý den, moc děkuji za pochvalu stránek, jsem ráda, že se Vám líbí :). Slovník je zatím relativně maličký, ale budu se snažit ho rozšířit. Ať se Vám daří a hodně štěstí u státnic. L. Súkupová

Napsat komentář

Vaše e-mailová adresa nebude zveřejněna. Vyžadované informace jsou označeny *