Je lepší CsI nebo GOS flat panel detektor?

V posledních letech došlo k velkému rozšíření přímé digitalizace (ať s přímou nebo nepřímou konverzí, nepřímá konverze může probíhat ve strukturním nebo nestrukturním scintilátoru), která postupně nahrazuje CR technologii. V současné době jsou běžně dostupné digitální detektory s nepřímou konverzí, při které je nejprve energie rtg fotonů přeměněna pomocí scintilačního materiálu na fotony viditelného světla, které jsou poté detekovány fotodiodou, ve které je jejich energie konvertována na elektrický signál. Mezi vlastnosti, kterými se vyznačují scintilační materiály, patří možnost vytvořit velkou plochu (velikost dostatečná pro zobrazení velkoformátového rtg obrazu, např. snímek srdce a plic), velká světelná výtěžnost (konverze rtg fotonů na fotony viditelného světla) a dostatečné prostorové rozlišení. Jako scintilační materiál se nejčastěji využívá CsI:Tl (jodid cesný dopovaný thaliem) nebo Gd2O2S:Tb (oxysulfid gadolinia dopovaný terbiem, někdy označovaný jenom GOS nebo gadox). Ale jaký je rozdíl mezi těmito dvěma materiály detektorů z hlediska kvality obrazu a dávky?

Nejprve něco o každém z materiálů

GOS je granulový scintilační materiál, který je výborný pro zpracování a zacházení. Navíc je cenově dostupnější. Základním parametrem, který určuje vlastnost GOS detektoru je tloušťka dané scintilační vrstvy, která přímo souvisí s absorpcí záření. Čím větší tloušťka, tím větší absorpce, ale tím horší prostorové rozlišení.

CsI je scintilační materiál vyráběný s krystalickou strukturou (krystaly ve formě podlouhlých jehel, které zabraňují difuzi světelných fotonů do prostoru), takže dosahuje výborného prostorového rozlišení. Další výhodou tohoto materiálu je snadnost výroby detektoru, kdy je možné mírně zahřátý materiál (50-250°C) přímo nanést na materiál vyčítací matice, aniž by došlo k degradaci vlastností. V neposlední řadě je výhodou také spektrum emitovaných fotonů, které se velmi dobře absorbují v amorfním silikonu, který je součástí vyčítací matice. Navíc CsI materiál poskytuje největší světelný výtěžek ze všech známých scintilačních materiálů.

Nyní prakticky

Z hlediska dávky je výhodnější CsI materiál, protože pro vznik obrazu postačuje nižší dávka, přibližně o 10%. Není to mnoho, ale nižší dávka je nižší dávka.

Z hlediska kvality obrazu je výhodnější opět CsI, protože poskytuje ostřejší obraz. Rozdíl je však opět malý, pro netrénované oko nerozeznatelný.

Existuje ještě další hledisko, které ovlivňuje rozhodnutí, který detektor si pořídit, a to je cena. V tomto ohledu je jednoznačně výhodnější GOS, protože je o 20-30% levnější.

Takže souhrnem, z hlediska kvalitativního je určitě výhodnější CsI materiál, z hlediska cenového pak GOS. Takže záleží na každém konkrétním případu, pro který typ detektoru se uživatel rozhodne.

A ještě něco z technického hlediska

Ve srovnání s ostatními typy detektorů, nejen GOS, ale i CR, film-fólie, DR s přímou konverzí, vyniká CsI skvělou kvantovou detekční účinností DQE (detective quantum efficiency), která charakterizuje kvalitu detektoru z hlediska efektivity využití dopadajícího signálu pro tvorbu výstupního signálu, kterým je obraz. Modulační přenosová funkce charakterizující prostorové rozlišení je velmi podobná systému film-fólie.

Z hlediska dalších vlastností je CsI výhodnější díky vyššímu fill faktoru, který udává, jaká část z plochy každého detekčního elementu je aktivně využita k detekci záření, příčemž platí, že čím vyšší fill faktor, tím lépe. Část detekčního elementu, která se nevyužívá (neaktivní část), zaujímá elektronika, která umožňuje vyhodnocení signálu z daného elementu. Fill fakto pro CsI se pohybuje v rozmezí 70-90%, zatímco pro GOS se pohybuje okolo 50-60%. Velikost neaktivní části detekčního elementu se s různou velikostí detekčního elementu nemění, proto platí, že čím menší detekční element, tím menší fill faktor, neboli tím procentuálně větší část zaujímá elektronika daného detekčního elementu.

Taktéž publikace [7] potvrdila, že CsI materiál je kvalitativně nadřazený materiálu GOS, kvalita obrazu (ve studii popisována prostorovým rozlišením na CDRAD fantomu, tj. nejedná se o klinický obraz) je o pro CsI o třetinu až polovinu lepší než pro GOS. Materiál GOS poskytuje i při vyšších dávkách téměř stejnou kvalitu obrazu, zatímco pro CsI se kvalita obrazu s rostoucí dávkou zvyšuje. Nevýhodou CsI materiálu v souvislosti s rostoucí dávkou je rostoucí směrodatná odchylka signálu homogenně ozářeného detektoru. U GOS detektoru není nárůst směrodatné odchylky patrný, avšak i tak je kvalita obrazu CsI nadřazená kvalitě obrazu GOS.

Použitá literatura
[1] Lanca L, Silva A. Digital imaging systems for plain radiography. Springer Science+Business Media, New York, 2013
[2] Kim HK, Cunningham IA, Yin Z, Cho G. On the development of digital radiography detectors: A review. International Journal of Precision Engineering and Manufacturing 2008; 9(4): 86-100
[3] https://info.blockimaging.com/gadox-vs.-cesium-dr-panel-comparison
[4] http://www.aapm.org/meetings/05AM/pdf/18-2623-22086-53.pdf
[5] http://www.ndt.net/article/wcndt00/papers/idn421/idn421.htm
[6] Aksoy ME, Kamasak ME, Akkur E, Ucgul A, Basak M, Alaca H. Evaluation and comparison of image quality for indirect flat panel systems with CsI and GOS scintillators. Health Informatics and Bioinformatics (HIBIT) 2012, 7th International Symposium on Health Informatics and Bioinformatics

Napsat komentář

Vaše e-mailová adresa nebude zveřejněna. Vyžadované informace jsou označeny *