Archiv autora: Lucie Súkupová

Mobilní CT

Pod pojmem „mobilní CT“ se mohou skrývat dva významy, které se však v českém překladu ztrácí. Významy sousloví mobilní CT mohou být následující:

  1. Jedná o CT na kolečkách (viz obr. 1), které může přejíždět v rámci nemocnice mezi různými odděleními.
  2. Jedná se o klasické CT, které je umístěno v návěsu (viz obr. 2), který s připojením k tahači projíždí méně dostupné geografické oblasti a provádí se na něm CT vyšetření obyvatel, kteří to ke klasickému CT skeneru mají velmi daleko, většinou desítky hodin cesty. Nebo se jedná o pacienty s komplikovaným socioekonomickým zázemím, kteří by na vzdálenější CT nejeli. Typickou zemí, kde několik pojízdných CT existuje, jsou Spojené státy americké. Nejčastěji se však jedná o mobilní CT skenery pro screening plic kuřáků a v dnešní době případně také mobilní CT skenery pro skenování covid pozitivních pacientů. V Evropě mobilní CT rozšířena nejsou.

Obr. 1: Mobilní CT [NeuroLogica | Medical Imaging Technology]

Obr. 2: Klasické CT umístěné v pojízdném návěsu [Mobile CT | Infectious Disease CT Solution | Computed Tomography – CT Scanners | Canon Medical Systems USA]

S každým z výše popsaných mobilních CT je spojeno několik výhod i nevýhod. V praxi jde vždy o to, o jaké konkrétní použití se jedná, aby byla uváženy právě ony výhody a nevýhody.

Ad 1. Mezi výrobce mobilních CT patří Neurologica, která se již v roce 2015 objevila na trhu s mobilním CT skenerem, který byl určen pro radiologická vyšetření hlavy a krku především z neurochirurgických indikací, proto i průměr otvoru v gantry byl tomu uzpůsoben (32 cm). Výhodou těchto skenerů byla právě jejich mobilita, kdy nebylo potřeba v rámci neurochirurgických operačních výkonů přejíždět s pacientem z operačního sálu na CT vyšetřovnu. Výhodou také byla možnost provést CT vyšetření přímo u pacientova lůžka, aniž se musel složitě překládat a převážet v rámci nemocnice. Avšak přeprava CT skeneru v rámci nemocnice může být poněkud komplikovanější, CT váží přes 400 kg a kvůli rozměrům může být někdy obtížnější projet některými užšími chodbami. Novější CT pak váží dokonce i přes 700 kg. Další nevýhodou těchto CT skenerů je jejich výkon, obecně se dá říct, že žádný z nabízených mobilních CT skenerů není ani zdaleka srovnatelný s klasickými CT skenery. Avšak i tak samozřejmě je možné na mobilních CT skenerech získat CT obrazy s diagnostickými informacemi.

Přehled mobilních CT skenerů pro vyšetření mozku (hlavy):
CereTom Elite (Neurologica) – otvor  gantry 32 cm, 8-řadý solid-state detektor, detekční element 1,25 mm, doba rotace 2 s, napětí 100-140 kV, anodový proud 1-7 mA, hmotnost 438 kg (další informace).
OmniTom (Neurologica) – otvor gantry 40 cm, 16-řadý GOS detektor, detekční element 0,625 mm, doba rotace 1 s, napětí 70-120 kV, anodový proud 5-45 mA, hmotnost 726 kg (další informace).
SOMATOM On.site (Siemens) – otvor gantry 35 cm, 32-řadý Stellar detektor, detekční element 0,75 mm, doba rotace 1 s, napětí 80-120 kV, anodový proud 3-24mA, hmotnost 998 kg (další informace).

Mimo mobilní CT pro vyšetření hlavy a krku jsou na trhu dostupné také CT skenery s velkým průměrem gantry, aby bylo možné vyšetřit celé tělo pacienta. Na těchto CT je možné vyšetřit hlavně statické části lidského těla, typicky vše mimo srdce. Na CT skenery jsou pro zobrazení srdce kladeny velmi vysoké požadavky, které samozřejmě takové mobilní CT nesplňuje.

Přehled mobilních CT skenerů pro vyšetření celého těla:
BodyTom Elite (Neurologica) – otvor gantry 85 cm (FoV neuvěřitelných 60 cm), 32-řadý solid-state detektor, detekční element 1,25 mm, doba rotace 1 s, napětí 80-140 kV, anodový proud 50-300 mA, hmotnost 1592 kg (další informace).

Je možné, že existuje více mobilních CT skenerů pro vyšetření celého těla, ale nemám o nich informace.

Ad 2. Výhodou klasických CT umístěných v návěsu s tahačem je to, že se jedná o klasické CT, tedy s velkým výkonem, krátkou dobou rotace (sub-sekundové časy), s velkou celkovou kolimací. Nevýhodou je nutnost častých kontrol kvality, protože CT přece jen dost trpí neustálým pojížděním v terénu. Vezmeme-li si, že kvalitní CT je založeno na přesné fokuzaci svazku elektronů z katody na anodu, pak jízda v hrbolatém terénu může způsobit dost škody. To je hlavní nevýhoda těchto mobilních CT.

Při psaní tohoto příspěvku jsem narazila na americkou společnost, která pronajímá CT skenery v návěsu. Jedná se o kvalitní CT skenery výrobců GE (Revolution Discovery 750HD, 750HD a VCT 64/128), Toshiba/Canon (Aquilion Prime SP 80, Aquilion Prime 160, Aquilion VeloCT a Aquilion 64 Whole Body) a Siemens (Somatom Perspective 64/128). Podle informací na webu možnosti pronájmu CT skeneru již využilo několik pracovišť, hlavně z důvodu vyšší poptávky po CT vyšetření u covidových pacientů.

U CT skenerů v návěsu ještě existuje několik možností přemístění, ne všechny CT v návěsu jsou připojeny k tahači. Buď se tedy jedná o CT v návěsu s možným připojením k tahači (obr. 3 vlevo), nebo se jedná o hybridní typ (obr. 3 uprostřed), u kterého se předpokládá, že takový skener zůstanu na místě po delší dobu, např. 3-6 měsíců, nebo se jedná o trvalý typ (obr. 3 vpravo), který lze instalovat s použitím jeřábu a v takovém případě se jedná o rozšíření prostor nemocnice o novou buňku, ve které je takový skener instalovaný.

Obr. 3: CT v návěsu s možným připojením k tahači (vlevo), hybridní typ umístění na dobu min. 3-6 měsíců (uprostřed) a trvalý typ (vpravo) [Lamboo medical (lamboo-medical.com)]

Poznámka: Neurologica byla pravděpodobně koupena firmou Samsung, takže některé výše zmíněné CT skenery jsou na webu dohledatelné i pod výrobcem Samsung. Ale myslím si, že to není pro pochopení příspěvku podstatné.

Webinář IAEA – zdůvodnění a optimalizace dentálního 2D a 3D zobrazení

International Atomic Energy Agency organizuje dne 21. 5. 2021 webinář na téma Zdůvodnění a optimalizace dentálního 2D a 3D zobrazení. Pro více informací: Improved justification and optimization of dental 2D and 3D imaging through education and training | IAEA. Webinář je přístupný zdarma po registraci.

Aktuální webináře

Do záložky Vzdělávání / Webináře bylo přidáno několik odkazů na aktuálně pořádané webináře, které se týkají radiodiagnostiky a intervenční radiologie.

Přehled aktuálních

International Organisation for Medical Physics (IOMP)
IOMP School Webinars – International Organization for Medical Physics. Semináře je možné sledovat také retrospektivně.

Fluoroscopy Users‘ Group (FLUG)
Masterclass Webinar Series – Fluoroscopy Users‘ Group (flug.org.uk)

International Atomic Energy Agency (IAEA)
Webinars in radiation protection | IAEA – radiační ochrana obecně, je potřeba si vybrat vhodný seminář. Semináře je možné sledovat také retrospektivně.

Radiační ochrana při operačních výkonech v ortopedii

International Atomic Energy Agency [1] nedávno na svém webu uveřejnila informace o radiační ochraně v ortopedii, společně s přehledem efektivních dávek u nejčastěji prováděných výkonů. Proto dnešní delší příspěvek bude zaměřen na toto téma také.

Skiaskopie se již stala nezbytnou součástí ortopedických operačních výkonů. Nejčastěji používaným rtg systémem je pojízdné C-rameno, které se pohybuje v rámci i několika operačních sálů a je používáno různými lékaři. Bohužel stále platí, že znalosti ohledně správného a bezpečného používání rtg záření nejsou mezi lékaři dostatečné [2].

Osobní dávky lékařů ani dávky pacientů z ortopedických výkonů s použitím C-ramene zdaleka nedosahují tak vysokých hodnot jako v případě intervenčních radiologických a kardiologických výkonů. Primárně díky tomu, že se nejedná o plně skiaskopicky naváděné výkony (ortoped využívá skiaskopii pouze ve velmi omezené míře) s prováděním akvizičních scén, případně digitální subtrakční angiografie. I přesto je však na místě dodržovat zásady radiační ochrany.

Mezi základní pravidla patří jednoznačně použití osobních ochranných pomůcek, zejména ochranných zástěr a ochranných límců. Ke zlepšení klinické praxe napomáhá vhodné teoretické vzdělání – jak rtg systém funguje, jakým způsobem vzniká rtg obraz, čím lze ovlivnit kvalitu obrazu a v neposlední řadě také jak lze ovlivnit dávku pacientovi i samotnému lékaři. Pozitivní vliv má také dobrá komunikace s radiologickým asistentem, jehož přítomnost při používání C-ramene je v mnoha zemích vyžadována.

Ačkoliv se použití ochranných pomůcek a teoretické vzdělání mohou zdát samozřejmé, tak irská studie [2] ukázala, že 65 % ortopedů v přípravě nemá v průběhu vzdělávání ani základní kurz radiační ochrany, 96 % ortopedů sice používá ochrannou zástěru, ale podstatně menší část používá také ochranný límec.

Jiná studie, tentokrát provedená v Anglii a Walesu [3], ukázala, že přestože existuje spousta studií o použití záření v ortopedii, pouze 8 z 50 lékařů ve výcviku některou studii četlo. Studie [3] také ukázala, že většina lékařů si není vědoma, že oblastí s nejvyššími dávkami na těle ortopeda jsou ruce (vědělo pouze 50 %). 32 % lékařů považuje za oblast s nejvyššími dávkami hlavu, 12 % trup a 6 % oči.

Ve studii [4] autor doporučuje provést u traumatických pacientek ve fertilním věku těhotenský test. Asi je to poněkud zvláštní přístup na dnešní dobu, pokud je to akutní stav, pak asi nebude čas provést test. I kdyby byl pozitivní, tak pokud je to akutní stav, tak se výkon s použitím rtg stejně provede. Zpětně se pak provede odhad dávky na plod a podle fáze těhotenství a dávky na plod se rozhodne o dalším postupu. Dávky na plod u těchto výkonů, kdy je použita často pouze skiaskopie (ale klidně po dobu několika minut), jsou relativně nízké. Prahová hodnota dávky na plod pro výskyt tkáňových (deterministických) účinků je docela vysoká, takže u většiny skiaskopických výkonů se prahové dávky nedosáhne.

Základní informace o C-ramenu a ochraně před zářením
Mezi základní součásti zobrazovacího řetězce u C-ramene patří rentgenka (zdroj záření), receptor obrazu (flat panel detektor nebo zesilovač obrazu – u starších nebo levnějších C-ramen), kolimátor a displej pro zobrazení rtg obrazu. Základní součásti jsou ilustračně znázorněny na obr. 1. Rentgenka produkuje záření, kolimátor upravuje velikost primárního rtg svazku, receptor obrazu detekuje záření prošlé pacientem a tvoří obraz, který se pak zobrazí na displeji.

Obr. 1: Základní součásti zobrazovacího řetězce (A – rentgenka, B – receptor obrazu, C – kolimátor, D – displej) [2]

Jen pro informaci ukázka, jak vypadá s C-rameno s flat panel detektorem a jak se zesilovačem obrazu, je uvedena na obr. 2.

Obr. 2: C-rameno s flat panel detektorem (vlevo) a se zesilovačem obrazu (vpravo)

Rentgenka generuje záření, které dopadá na pacienta, interaguje v pacientovi, velká část se pohltí, menší část se rozptýlí v pacientovi a také vyletí ven z pacienta (a ozáří pracovníky) a ještě menší část prochází pacientem a dopadá na receptor obrazu. Z těch poté vzniká rtg obraz.

Jakmile záření dopadne na pacienta, velká část záření se z pacienta rozptýlí zpětně, jak je uvedeno na obr. 3. Kvůli tomuto zpětnému rozptylu se doporučuje, aby, pokud je to možné, byla rentgenka umístěna pod pacientem, tedy pod stolem s pacientem. V takovém případě pak rozptýlené záření putuje k zemi a způsobuje staticky významně menší ozáření lékařů než v případě, kdy je rentgenka umístěna nad pacientem. Znázornění rozptýleného záření pro obě pozice rentgenky je znázorněno na obr. 3 červenými šipkami.

Obr. 3: Znázornění rozptýleného záření při pozici rentgenky pod pacientem (vlevo) a nad pacientem (vpravo) [2]

Množství rozptýleného záření a radiační zátěž z toho plynoucí pro lékaře lze redukovat zmenšením velikost rtg pole (správná kolimace, viz obr. 4), zmenšením prozařovaného objemu (co nejméně používat šikmé a bočné projekce, používat zadopřední) a také snížením napětí (na C-ramenech s expoziční automatikou manuální nastavení napětí většinou není možné, systém si ho volí automaticky). Současně s tím lze uplatnit všechna tři základní pravidla radiačních ochrany – ochrana vzdáleností (poodstoupení od pacienta, je-li to možné), ochrana stíněním (osobní ochranné prostředky, samostatně stojící stínící bariéry) a ochrana časem (čím kratší dobu se používá rtg záření, tím menší dobu jsem v rozptýleném záření, tím lépe).

Obr. 4: Nedostatečná kolimace (vlevo) a správná kolimace (vpravo) [2]

Autoři některých publikací doporučují při vkládání rukou do primárního rtg svazku použití ochranných rukavic se stínicím ekvivalentem. To však není vždy správná volba, protože jakmile ruka s rukavicí překryje aktivní oblast expoziční automatiky (oblast, ze které rtg systém na základě množství prošlého záření vyhodnocuje, je-li potřeba dávku zvýšit nebo snížit), rtg systém to vyhodnotí jako více zeslabující objekt a dávku zvýší. Toto zvýšení bude vyšší než v případě, že aktivní oblast expoziční automatiky překryje pouze ruka samotná (myšleno bez rukavice). Při použití rukavice sice dojde ke snížení dávky na ruku, ale tím, že dojde ke zvýšení dávky kvůli více zeslabujícímu objektu, je pak ušetřená dávka na ruce opravdu velmi nízká.

Dalším základním přístupem vedoucím k redukci dávek je použití pulzní skiaskopie (což je pro většinu pracovišť naprostá samozřejmost), redukce délky a počtu skiaskopických smyček (scén) a současně redukce počtu pulzů za sekundu. Standardně by to mělo být v rozsahu 1-6 pulzů/s, zatímco kontinuální skiaskopie používá 30 p/s. U akvizice, je-li použita (kvalitnější zobrazení s podstatně vyšší dávkou) se doporučuje používat single akvizice (pořízení pouze jednoho obrazu místo celé smyčky), je-li to možné a také minimalizovat počet obrazů při delší akvizici.

Většinu výše zmíněných způsobů k redukci radiační zátěže lze aplikovat současně, jedná se o přístup k ozáření jako takovému. Kdykoliv, kdy se využívá rtg záření, měl by ortoped pamatovat na základní princip ALARA – As Low As Reasonably Achievable – tak nízko, jak je rozumně dosažitelné. Tedy nedělat ze záření zabijáka a nestát v betonovém bunkru, ale ani nepoužívat záření víc, než je nezbytně nutné.

Použitá literatura
[1] Radiation protection of medical staff in orthopedic surgery | IAEA
[2] Kaplan DJ, Patel JN, Liporace FA, et al. Intraoperative radiation safety in orthopaedics: a review of the ALRA (As low as reasonably achievable) principle. Patien Saf Surg. 2016; 10: 27.
[3] Khan FR, Ul-Abadin Z, Rauf S, et al. Awareness and attitudes amongst basic surgical trainees regarding radiation in orthopaedic trauma surgery. Biomed Imaging Interv J 2010; 6(3): e25.
[4] Flik K, Kloen P, Toro JB, et al. Orthopaedic trauma in the pregnant patients. J Am Acad Orthop Surg. 2006; 14(3): 175-82.

Nové tutoriály na webu International Atomic Energy Agency

IAEA přidala na svůj web několik tutoriálů.

Jeden se týká QC na CT, je k dispozici zde: Human Health Campus – Tutorial Videos on Quality Control for CT (iaea.org). Tutoriál se skládá z několika krátkých videí, ve kterých je popsáno a  ilustrativně předvedeno, co se daným testem ověřuje, jak se test provádí, jak se vyhodnocuje a taktéž jaké odchylky jsou ještě akceptovatelné (dle doporučení Quality Assurance Programme for Computed Tomography: Diagnostic and Therapy Applications | IAEA). Tato publikace je také velmi užitečná jako návod pro provádění QC na CT skenerech.

Dále je na webu IAEA k dispozici tutoriál pro Radiační ochranu u intervenčních výkonů, k dispozici zde: Online training in radiation protection | IAEA , kdy je potřeba se registrovat, ale současně je možné získat certifikát. Individuální videa jsou pak přístupná zde: Training material | IAEA, videa komprimovaná v jednom zip souboru pak zde: rpop_radiation_protection_in_interventional_procedures.zip | IAEA.

Mimo výše zmíněné byl na web IAEA umístěn také vzdělávací tutoriál pro Radiační ochranu při zobrazování v dentální radiologii, který je k dispozici zde: Online training in radiation protection | IAEA. Opět možné shlédnout buď s registrací a certifikátem, nebo volně bez registrace.

Kvíz XV

Kvíz se týká CT zobrazení a CT vyšetření.

Otázky:
Q1: Která z následujících vlastností není vlastností bow tie filtru?
a) Redukuje intenzitu svazku, která dopadá na detektor
b) Dělá šum uniformnější
c) Kolimuje rtg svazek dopadající na pacienta
d) Zvyšuje průměrnou energii dopadajícího svazku

Q2: U typického jednořadého CT skeneru je tloušťka řezu určena:
a) Velikostí ohniska
b) Šířkou rtg svazku
c) Velikosti zeslabující protirozptylové mřížky
d) Šířkou bow tie filtru

Q3: U typického multidetektorového CT skeneru je tloušťka řezu určena:
a) Velikostí ohniska
b) Šířkou rtg svazku
c) Šířkou individuálního detektoru a tím, jsou-li informace sousedních detekčních elementů kombinovány
d) Šířkou bow tie filtru

Q4: u CT skiaskopie se
a) Stůl kontinuálně pohybuje, ale rentgenka je stacionární
b) Stůl je stacionární, ale rentgenka se kontinuálně pohybuje
c) Stůl i rentgenka se kontinuálně pohybují
d) Stůl i rentgenka jsou stacionární

Q5: Které z následujících tvrzení o cone-beam svazku je nepravdivé? Poznámka: Nejedná se o CBCT jako 3D modalitu s flat panel detektorem, ale o tvar rtg svazku, kdy byl vějířový svazek nahrazen tzv. cone-beam svazkem.
a) Cone-beam svazek je na multidetektorových CT
b) U cone-beam CT platí, že periferní (vnější) detektory zachycují zeslabení z několika sousedních řezů
c) Rekonstrukce u cone-beam je jednodušší než u vějířového svazku
d) Cone-beam svazky jsou polychromatické

Q6: Prepacientská filtrace (mezi rentgenkou a pacientem) u multidetektorového CT:
a) Určuje prostorové rozlišení
b) Redukuje tvrdnutí rtg svazku
c) Zvyšuje tvrdnutí rtg svazku
d) Se používá pro tvarování rtg svazku

Q7: Která data jsou filtrována při zpětné filtrované projekcí?
a) Rekonstruovaná obrazová data
b) Projekovaná data
c) Data lokalizačního skenu
d) Koronální nebo sagitální rekonstruované obrazy

Q8: Kvantový šum u CT lze snížit:
a) Menší tloušťkou řezu
b) Zvýšením mA
c) Větší tloušťkou pacienta
d) Snížením kV

Q9: Multidetektorové CT má celkovou kolimaci 16 mm a pohyb stolu 24 mm/rotace. Jaký je pitch faktor?
a) 0,5
b) 0,7
c) 1,0
d) 1,5

Q10: Posune-li se stůl u helikálního skenu o 18 mm/rotace a pitch faktor je 1,2, jaká je celková kolimace svazku?
a) 2,1 mm
b) 21 mm
c) 1,5 mm
d) 15 mm

Q11: Který z následujících kroků zlepší podezřelost léze (bude zřetelnější, o jakou lézi se jedná)?
a) Snížení matice rekonstruovaného obrazu
b) Zmenšení tloušťky rekonstruovaného řezu
c) Snížení mA
d) Zvýšení šířky okna

Q12: Je-li napětí nastaveno na 100 kV, pak:
a) Všechny emitované fotony mají energii 100 keV
b) Průměrná hodnota energie všech fotonů je 10 keV
c) Průměrná energie všech fotonů, které dopadnou na detektor, je 100 keV
d) Maximální energie emitovaných fotonů je 100 keV

Q13: Má-li materiál lineární součinitel zeslabení menší než voda, pak jeho CT číslo bude:
a) Negativní
b) Pozitivní
c) Nelze říct bez znalosti hustoty materiálu
d) Nelze říct bez znalosti chemického složení

Q14: Která z následujících možností neovlivňuje CT číslo voxelu?
a) Šířka okna
b) kV
c) Zeslabení okolní tkáně
d) Konvoluční kernel (filtr)

Q15: Který z typů detektorů se nejčastěji využívá na CT?
a) Scintilační detektory
b) Plynové detektory
c) Kalorimetry
d) Všechny výše uvedené, záleží na výrobci

Q16: Hrubá (raw) CT data:
a) Obsahují odezvy detektorů pro všechny projekce při akvizici
b) Obsahují rekonstrukční data pro různé tloušťky řezů
c) Jsou typicky mnohem menší než rekonstruované obrazy
d) Vypadají jako rozmazaný obraz pacienta

Q17: Které z následujících CT čísel se zobrazí bílou barvou při šířce okna 400 (WW) a středu okna 60 (WC)?
a) CT čísla nad 60 HU
b) CT čísla v rozsahu -140 až +260 HU
c) CT čísla pod -400 HU
d) CT čísla na +260 HU

Q18: Jaký je objem voxelu CT skenu o tloušťce 3 mm a velikosti pixelu 1 mm?
a) 0,3 mm^3
b) 3 mm^3
c) 30 mm^3
d) 0,3 cm^3

Q19: Jaký je rozdíl mezi pixelem a voxelem?
a) Žádný, pouze jiný název
b) Voxel reprezentuje element v pravidelné 3D síti, pixel reprezentuje element v 2D síti
c) Voxely se používají na MR, zatímco pixely na CT
d) Voxely se používají na CT, zatímco pixely na MR

Q20: Který z následujících parametrů při zachování všech ostatních parametrů konstantních zlepší prostorové rozlišení?
a) Zvýšení pitch faktoru
b) Zvýšení tloušťky řezu
c) Zmenšení velikosti ohniska
d) Zvýšení šířky okna

Q21: Jaké je typické in-plane rozlišení (v rovině XY, tj. kolmé na pacienta, axiální rovina) u CT skenu břicha?
a) 0,01-0,05 mm
b) 0,1-1,0 mm
c) 1-5 mm
d) 10-15 mm

Q22:  Jaké je typické rozlišení v podélné ose pacienta? (osa Z) u CT skenu břicha?
a) 0,01-0,05 mm
b) 0,1-1,0 mm
c) 1-5 mm
d) 10-15 mm

Q23: Který z následujících parametrů při zachování všech ostatních parametrů konstantních sníží dávku pacientovi?
a) Zvětšení velikosti pacienta
b) Zvýšení mA
c) Zvýšení pitch faktoru
d) Zvýšení počtu řad detektorů

Q24: Pro zlepšení prostorového rozlišení při zachování šumu v CT obraze je potřeba:
a) Zmenšit tloušťku řezu a snížit mA
b) Zmenšit tloušťku řezu a zvýšit mA
c) Zmenšit tloušťku řezu a zvětšit matici
d) Zmenšit tloušťku řezu a zvýšit pitch faktor

Q25: Jaké jsou výhody delší doby CT skenu (prodloužení doby rotace rentgenky v gantry) při zachování všech ostatních parametrů konstantních?
a) Lepší časové rozlišení
b) Lepší rozlišení kontrastu
c) Lepší prostorové rozlišení
d) Šetření rentgenky

Q26: Jakým způsobem lze získat z veličiny CTDI_w veličinu CTDI_vol?
a) Vynásobením číslem 1
b) Vynásobením pitch faktorem
c) Vynásobením 1/pitch faktor
d) Vynásobením skenovanou délkou

Q27: Která kombinace následujících parametrů představuje nejvyšší radiační zátěž pro pacienta?
a) 120 kV; 200 mA; 0,5 s doba rotace; 0,8 pitch faktor
b) 120 kV; 150 mA; 1,0 s doba rotace; 1,0 pitch faktor
c) 90 kV; 150 mA; 1,5 s doba rotace; 1,5 pitch faktor
d) 140 kV; 200 mA; 0,5 s doba rotace; 1,5 pitch faktor

Q28: Jak se liší dentální CBCT od klasického CT skeneru?
a) Rotačním časem
b) FOV (field of view)
c) Rozsahem použitelných kV
d) Všechny možnosti

Q29: Jaká je přibližná dávka na plod při CT vyšetření břicha těhotné pacientky (myšleno na jednu fázi)?
a) 0,01-0,05 mGy
b) 0,10-0,50 mGy
c) 1-5 mGy
d) 10-50 mGy

Q30: Jaká je přibližná dávka na kůži při CT vyšetření?
a) 0,03 mGy
b) 0,3 mGy
c) 3 mGy
d) 30 mGy

Odpovědi:
A1: c) Kolimuje rtg svazek dopadající na pacienta
A2: b) Šířkou rtg svazku
A3: c) Šířkou individuálního detektoru a tím, jsou-li informace sousedních detekčních elementů kombinovány
A4: b) Stůl je stacionární, ale rentgenka se kontinuálně pohybuje
A5: c) Rekonstrukce u cone-beam je jednodušší než u vějířového svazku
A6: d) Se používá pro tvarování rtg svazku
A7: b) Projekovaná data
A8: b) Zvýšením mA
A9: b) 1,5 (posun stolu/celková kolimace)
A10: d) 15 mm
A11: b) Zmenšení tloušťky rekonstruovaného řezu
A12: d) Maximální energie emitovaných fotonů je 100 keV
A13: a) Negativní
A14: a) Šířka okna
A15: a) Scintilační detektory
A16: a) Obsahují odezvy detektorů pro všechny projekce při akvizici
A17: d) CT čísla na +260 HU
A18: b) 3 mm^3
A19: b) Voxel reprezentuje element v pravidelné 3D síti, pixel reprezentuje element v 2D síti
A20: c) Zmenšení velikosti ohniska
A21: b) 0,1-1,0 mm
A22: c) 1-5 mm
A23: c) Zvýšení pitch faktoru
A24: b) Zmenšit tloušťku řezu a zvýšit mA
A25: d) Šetření rentgenky
A26: c) Vynásobením 1/pitch faktor
A27: b) 120 kV; 150 mA; 1,0 s doba rotace; 1,0 pitch faktor (závislost je kV^2*mAs*1/pitch)
A28: d) Všechny možnosti
A29: d) 10-50 mGy
A30: d) 30 mGy

Rtg vyšetření srdce a plic (3)

V předešlých příspěvcích jsme si řekli o PA projekci vestoje (standardně prováděná na stacionárním skiagrafickém systému) a AP projekci vleže (nejčastěji prováděná na pojízdném skiagrafickém systému na lůžku) a o jejich výhodách. Mimo tyto dvě často zmiňované projekce je možné při rtg vyšetření srdce a plic provést také bočnou neboli laterální projekci. Obě projekce jsou i s velmi užitečným popisem jednotlivých struktur uvedeny na obr. 1.

Obr. 1: PA a laterální projekce při rtg srdce a plic (Normal, Labelled, Chest x-ray – Undergraduate Diagnostic Imaging Fundamentals (pressbooks.com))

Při laterální projekci stojí pacient levým bokem k receptoru obrazu, takže rtg svazek vstupuje do jeho pravého boku a vystupuje z pacientova levého boku. Důvodem je zde opět anatomická stavba pacienta – srdce je umístěno více vlevo, takže při této pozici dělá srdce menší srdeční stín. Laterální projekce je prováděna často jako doplňující vyšetření k PA projekci.

Při PA a laterální projekci u vertigrafu musí být pacient schopen stát nebo sedět ve vzpřímené pozici, měl by být schopen zadržet dech a v neposlední řadě by měl být schopen spolupracovat. Rtg svazek vstupuje do zad pacienta a poté vystupuje na přední straně pacienta.

AP projekce vleže se provádí u těch pacientů, u kterých není možné provést PA projekci u vertigrafu (vestoje ani vsedě). Většinou se jedná o pacienty ve vážném stavu. Receptor obrazu, dnes nejčastěji flat panel detektor, případně CR kazeta, se vkládají pod pacienta, rentgenka je umístěna nad pacientem. Rtg svazek vstupuje do pacienta zepředu a vystupuje ze zad. Ukázka rtg obrazu stejného pacienta získaná při PA projekci vestoje a následně v AP projekci na lůžku je uvedena na obr. 2.

Obr. 2: PA projekce vestoje a AP projekce vleže

Dalším typem projekce je lordotická projekce. Lordotická projekce je taková projekce na plíce, u které rtg svazek vstupuje do pacienta zepředu a prochází šikmo vzhůru (buď je nastaven rtg svazek tímto směrem nebo je šikmo umístěn pacient a rtg svazek směřuje horizontálně). Rtg obraz se od standardního PA obrazu odlišuje v tom, že klíční kosti nepřekrývají plíce, konkrétně tedy plicní hroty (apexy). Ukázka pozice rentgenky a detektoru a rtg obrazu při PA a lordotické projekci jsou uvedeny na obr. 3. Tato projekce je dnes prováděna velmi zřídka.

Obr. 3: Lordotická projekce – pozice rentgenky a detektoru (A), rtg obraz v PA projekci (B) a rtg obraz v lordotické projekci (C) (Imaging Techniques | Thoracic Key)

Velmi detailní anatomický popis a objasnění projekcí při rtg vyšetření srdce a plic je také v následujícím videu: Chest X-ray: Introduction and Approach – YouTube. Vřele doporučuji.

To je již vše o rtg vyšetření srdce a plic. Je to psáno z pohledu fyzikálního, proto se občas mohou vyskytnout nějaké anatomické nepřesnosti, za které se omlouvám.

Použitá literatura
Types of X-Ray examinations – YouTube
Normal, Labelled, Chest x-ray – Undergraduate Diagnostic Imaging Fundamentals (pressbooks.com)
Imaging Techniques | Thoracic Key

Rtg vyšetření srdce a plic (2)

předešlém příspěvku jsme si řekli již o některých výhodách zadopřední (PA) a předozadní (AP) projekce, přičemž PA se používá při pozici pacienta u vertigrafu, AP pak u pacientů vyšetřovaných na lůžku.

Jednou z nevýhod AP geometrie při vyšetření na lůžku je zvětšení obrazu. Asi by nám obecně nepřišlo špatné, vidět patologii zvětšenou, ale problém nastává proto, že v rtg obraze je zvětšeno pouze něco. Právě orgány vzdálenější od receptoru obrazu jsou více zvětšené než orgány nacházející se blízko receptoru obrazu, dochází tam k falešnému zvětšení. Několik grafických znázornění, jak dochází k onomu zvětšení, je uvedeno na následujících obrázcích.

Na obr. 1 je uveden vliv vzdálenosti ohniska (na obr. 1 označen „X-ray source“) od vyšetřovaného objektu při zachování vzdálenosti vyšetřovaný objekt – receptor obrazu.

Obr. 1. Vliv vzdálenosti ohniska od vyšetřovaného objektu na zvětšení rtg obrazu při zachování konstantní vzdálenosti vyšetřovaný objekt – receptor obrazu [Imaging the Chest: The Chest Radiograph | Radiology Key]

Z obr. 1 je zřejmé, že čím větší vzdálenost ohnisko – vyšetřovaný objekt, tím je zvětšení rtg obrazu menší, tedy velikost rtg obrazu více odpovídá reálné velikosti.

Na obr. 2 je uveden vliv vzdálenosti vyšetřovaného objektu od receptoru obrazu při zachování vzdálenosti ohnisko – vyšetřovaný objekt. Jde tedy pouze o oddálení receptoru obrazu od vyšetřovaného objektu.

Obr. 2: Vliv vzdálenosti receptoru obrazu od vyšetřovaného objektu na zvětšení rtg obrazu při zachování konstantní vzdálenosti ohnisko – vyšetřovaný objekt [Imaging the Chest: The Chest Radiograph | Radiology Key]

Z obr. 2 je zřejmé, že čím menší vzdálenost receptor obrazu – vyšetřovaný objekt, tím je zvětšení rtg obrazu menší, tedy velikost rtg obrazu více odpovídá reálné velikosti.

Nyní spojíme všechny výše uvedené skutečnosti do praktického provedení rtg vyšetření srdce a plic: PA projekce s velkou ohniskovou vzdáleností (vzdálenost ohnisko – receptor obrazu 180-200 cm) a AP projekce s malou ohniskovou vzdáleností (vzdálenost ohnisko – receptor obrazu 80-100 cm). Grafické znázornění je uvedeno na obr. 3.

Obr. 3: Vliv PA a PA projekce na zvětšení rtg obrazu [Imaging the Chest: The Chest Radiograph | Radiology Key]

Při pohledu na obr. 3 je zřejmé, že při AP projekci dostáváme zvětšený rtg obraz, ale srdce je v něm zvětšeno více ve srovnání se zvětšením samotného hrudníku než při PA projekci. Právě na to je nutné pamatovat při popisu rtg vyšetření provedených na lůžku. Ukázka rtg obrazu stejného pacienta získaná v krátké době po sobě v PA projekci vestoje a AP projekci vleže je uvedena na obr. 4. Obr. 4 vlevo by mohl být lépe zobrazen použitím widowingu a levellingu.

Obr. 4: Rtg obraz srdce a plic pořízený v PA projekci u vertigrafu a AP projekci na lůžku [Imaging the Chest: The Chest Radiograph | Radiology Key]

Z obr. 4 je zřejmé, že při PA projekci vestoje je srdeční stín menší, současně implantovaný kardiostimulátor/defibrilátor vypadá menší, resp. více odpovídá reálné velikosti. Při PA projekci vestoje je možné zajistit kolmost rtg svazku na tělo pacienta a současně kolmost rtg svazku na receptor obrazu, zatímco u AP projekce na lůžku není kolmost často splněna. Při PA projekci vestoje je bránice posunuta níže, jsou zobrazeny expandované plíce, zatímco při AP projekci vleže může být spodní část plic zastíněna. Podobně s výpotkem na plicích. Při PA projekci vestoje bude tekutina umístěna v dolní části plic, zatímco při pozici vleže bude tekutina na více místech, případně bude rozprostřená po celých plicích, což se projeví vyšší denzitou celých plic a nemusí být v rtg obraze tak jasně viditelná jako při projekci vestoje. Při PA projekci vestoje má pacient přitisknuté všechny struktury na vertigraf stejně (horní a dolní část hrudníku), zatímco u AP projekce na lůžku se více projev lordotická pozice – různá vzdálenost horní a dolní části hrudníku od rentgenky. Přehled dalších možných patologií, které se mohou v rtg obraze projevit právě kvůli AP projekci na lůžku jsou uvedeny v tab. 1.

Tab. 1: Patologie vznikající v rtg obrazu v důsledku AP projekce na lůžku [Imaging the Chest: The Chest Radiograph | Radiology Key]

Při AP projekci na lůžku dochází častěji k rotaci těla, takže hrudník není zobrazen v rtg obraze symetricky, viz obr. 5, na kterém jsou znázorněny objekty simulující klíční kosti a srdce. Lze to poznat např. podle nesymetrické pozice klíčních kostí, viz obr. 6.

Obr. 5: Simulace klíčních kostí a srdce ve správné a rotované projekci [Imaging the Chest: The Chest Radiograph | Radiology Key]

Obr. 6: Rotovaný rtg obraz pořízení v AP projekci na lůžku [Imaging the Chest: The Chest Radiograph | Radiology Key]

Rtg vyšetření srdce a plic se standardně provádí v nádechu. Avšak jsou pacienti, kteří se nadechnout nedokáží. To se samozřejmě projeví i v rtg obraze. Ukázky rtg vyšetření v nádechu a výdechu jsou zobrazeny na obr. 7.

Obr. 7: Rtg vyšetření v nádechu (vlevo) a ve výdechu (vpravo) [Types of X-Ray examinations – YouTube]

To je pro tentokrát vše, o rtg vyšetření hrudníku bylo něco uvedeno již velmi dávno, v tomto příspěvku. Příště si řekneme ještě něco více k jednotlivým projekcím při rtg vyšetření srdce a plic.

Použitá literatura
Imaging the Chest: The Chest Radiograph | Radiology Key
Types of X-Ray examinations – YouTube

Rtg vyšetření srdce a plic (1)

Lékaři popisující rtg snímek srdce a plic by měli být seznámeni s tím, jak se změní vzhled rtg obrazu tehdy, změní-li se geometrie vyšetření. Např. se neprovede zadopřední (PA) ale předozadní (AP) projekce. V dnešním příspěvku si řekneme více o tom, jak se daná geometrie projeví v rtg obraze. Asi to není téma úplně typické pro radiologické fyziky, ale určitě je fajn dozvědět se něco nového a předpokládám, že to může být zajímavé i pro radiologické asistenty, kteří právě taková vyšetření standardně provádějí.

Obecně se dá říct, že je-li to možné, pak při rtg vyšetření srdce a plic stojí pacient u vertigrafu (receptor obrazu svisle umístěný v držáku) na rtg vyšetřovně, což s sebou nese několik výhod, které budou uvedeny postupně. Není-li to možné, pak může např. sedět u vertigrafu na vyšeřovně a není-li ani to možné, pak pacient leží na lůžku, nejčastěji přímo na pacientském pokoji. Jestliže se dokáže pacient posadit, pak je výhodné převézt pacienta i s postelí k vertigrafu a posadit ho na lůžku u vertigrafu. Rtg vyšetření u vertigrafu (vestoje, případně vsedě) je vždy kvalitnější než vleže, už kvůli použití protirozpylové mřížky, ale jsou zde i další geometrické a anatomické důvody.

Při pozici vestoje u vertigrafu se provádí PA projekce, pacient stojí zády k rentgence a čelem k receptoru obrazu. Tedy rtg svazek vstupuje do pacienta zezadu a vystupuje zepředu, poté dopadá na receptor obrazu. U vyšetření na lůžku je to naopak, vyšetření se provádí v AP projekci, rtg svazek vstupuje do pacienta vpředu a vystupuje ze zad, pod kterými je umístěn receptor obrazu. Ukázka PA a AP projekce u vertigrafu je uvedena na obr. 1.

Obr. 1: PA a AP projekce [Imaging the Chest: The Chest Radiograph | Radiology Key]

Důvodem, proč je rtg vyšetření vestoje kvalitnější, je vhodnější anatomická geometrie (srdce blíže receptoru obrazu) a taktéž geometrie akvizice rtg vyšetření (větší vzdálenost mezi ohniskem a pacientem).

Výhoda anatomické geometrie: Srdce je v lidském těle umístěno blíže k přední straně hrudníku (lze vidět i na obr. 1, kde je srdce simulováno šedým oválem v hrudníku). Je-li pacient vyšetřován v PA projekci, pak srdce samotné leží blíže k receptoru obrazu (obr. 1 vpravo), zvětšení je pouze malé a srdce dělá pouze malý srdeční stín. Je-li pacient vyšetřován v AP projekci (obr. 1 vlevo), srdce je od receptoru obrazu dále, takže pak i zvětšení je větší. Názorná ukázka zvětšení je uvedena na obr. 2. Z výše uvedeného vyplývá, že pro získání co nejreálnější velikosti objektu je potřebné umístit ho co nejblíže receptoru obrazu. Z obr. 2 je podle intenzity barvy na receptoru obrazu zřejmé, že je-li vyšetřovaný objekt blíže receptoru obrazu (ruka blíže plátnu), pak je i intenzita v rtg obraze vyšší, neboli části umístěné blíže receptoru obrazu jsou kontrastnější než ty části, které jsou umístěny od receptoru obrazu dále.

Obr. 2: Zvětšení při AP (nahoře) a PA (dole) projekci [Imaging the Chest: The Chest Radiograph | Radiology Key]

Výhoda geometrie akvizice: Je-li pacient vyšetřován u vertigrafu, pak se nejčastěji používá vzdálenost ohnisko – receptor obrazu 180-200 cm. Při rtg vyšetření na lůžku se používá vzdálenost ohnisko – receptor obrazu 80-100 cm. Z toho vyplývá, že rtg obraz na lůžku má větší zvětšení než rtg obraz u vertigrafu, typicky se to týká srdečního stínu. Ukázka výhody geometrie PA vs. AP je uvedena na obr. 3. Z výše uvedeného vyplývá, že pro získání co nejreálnější velikosti objektu je potřebné umístit zdroj záření co nejdále od vyšetřovaného objektu. Dalším nezanedbatelným efektem větší vzdálenosti ohniska od vyšetřovaného objektu je zlepšení geometrické neostrosti způsobené nenulovou velikostí ohniska, ale o tom si řekneme více v následujícím příspěvku.

Obr. 3: Zvětšení vyšetřovaného objektu při malé (nahoře) a velké (dole) ohniskové vzdálenosti [Imaging the Chest: The Chest Radiograph | Radiology Key]

Typicky se při vyšetření na lůžku nepoužívá fyzická protirozptylová mřížka, avšak je možné použít virtuální (softwarovou) mřížku. Nepřítomnost protirozptylové mřížky vede k horší kvalitě rtg obrazu.

Nemá-li popisující radiolog informaci o projekci, může se stát, že podle velikosti srdečního stínu popíše kardiomegalii, ačkoliv jí pacient reálně netrpí.

Poznámka: Kardiomegalie neboli zvětšení srdce, je definována tak, že srdce, resp. srdeční stín, je větší než 0,5x průměr hrudníku. Ukázka měření je uvedena na obr. 4.

Obr. 4: Ukázka měření rozměrů pro stanovení kardiomegalie [How to measure Cardiomegaly in CXR – YouTube]

Postup měření je následující: Nakreslete svislou čáru přes střed těla (páteř). Změřte největší rozměr srdce od svislé čáry vpravo a vlevo. Poté změřte průměr celého hrudníku. Je-li podíl šířky srdečního stínu (A+B) větší než 0,5*C (šířka hrudníku), pak se jedná o kardiomegalii. Poměr (A+B)/C se nazývá také kardiotorakální index – poměr šířky srdečního stínu/šířky hrudníku.

Více o výhodách a nevýhodách PA a AP projekce při rtg vyšetření srdce a plic si řekneme v následujícím příspěvku.

Použitá literatura
Imaging the Chest: The Chest Radiograph | Radiology Key
How to measure Cardiomegaly in CXR – YouTube
Microsoft PowerPoint – Guidelines SS, diagnostika SS.ppt [režim kompatibility] (kardio-cz.cz)

Kumulativní efektivní dávky z opakovaných radiodiagnostických vyšetření

V posledních letech jsou dost ožehavým tématem dávky z opakovaných radiodiagnostických vyšetření. V tomto případě není opakovanými vyšetřeními myšleno znovuprovedení vyšetření z důvodu např. špatné kvality obrazu, ale situace, kdy pacienti podstupují některá vyšetření opakovaně z důvodu sledování léčby. Touto tématikou se zabýval také virtuální meeting ve dnech 19.-23. 10. 2020 uspořádaný International Atomic Energy Agency. Alespoň některé postřehy bych tu ráda uvedla, ale pro začátek uvedení do problematiky.

Různé studie ohledně kumulativních dávek z opakovaných vyšetření, zejména CT vyšetření, se začaly objevovat už cca před 10 lety, avšak pouze velmi výjimečně. Odhady kumulativních dávek v těchto studiích byly většinou založeny na vynásobení typických dávek počtem vyšetření. Mimo to se objevilo i několik studií, které se zabývaly kumulativními dávkami pro specifická onemocnění, zejména ta, u kterých pacienty často podstupují radiodiagnostické výkony. Typicky se jedná o pacienty s Crohnovou chorobou, s kardiologickým onemocněním, selhávajícími ledvinami, implantovanými stentgrafty atd.

Studie zabývající se kumulativními efektivními dávkami se ve větší míře objevují i dnes, avšak s podstatně přesnějšími odhady kumulativních efektivních dávek. Odhady kumulativních efektivních dávek jsou založeny na dose management softwarech neboli softwarech pro sledování dávek (více např. v příspěvku o CT optimalizaci). Díky těmto softwarům je již možné podstatně jednodušším způsobem určit, která onemocnění jsou spojena s vyššími kumulativními dávkami a také jaké přibližně jsou tyto kumulativní dávky. Do popředí zájmu se pak dostávají pacienti, u nichž je kumulativní efektivní dávka vyšší než 100 mSv.

Dříve se žilo v domnění, že pacienti s kumulativními efektivními dávkami vyššími než 100 mSv jsou spíše pacienti léčení ve speciálních centrech a že jsou to převážně starší pacienti s maligním onemocněním nebo s onemocněním s velmi špatnou prognózou. Takže se této problematice nevěnovala příliš pozornost.

Nové světlo na tuto problematiku vrhly až nedávno publikované studie, za nimiž často stál Madan Rehani, který se v poslední době zabývá osvětou této problematiky. Studie zahrnující CT vyšetření byly provedeny ve spolupráci s různými státy a zdravotnickými zařízeními. Mezi tyto studie patří zejména tři následující:

Zde jsou odkazy ke stažení jednotlivých článků:
Patients undergoing recurrent CT scans: assessing the magnitude (Rehani, M.)
Patients undergoing recurrent CT exams: assessment of patients with non-malignant diseases, reasons for imaging and imaging appropriateness (Rehani, M.)
Multinational data on cumulative radiation exposure of patients from recurrent radiological procedures: call for action (Brambilla, M.)

Do studií bylo zahrnuto 344 nemocnic ze 20 zemí, využívající 344 CT skenerů. Sběr dat trval od 1 do 5 let. Zahrnuto bylo 3,3 mil. pacientů (pouze ti, kteří podstoupili CT vyšetření opakovaně, ostatní pacienti zahrnuti nebyli), kteří podstoupili přes 5 mil. CT vyšetření. Ve studiích se řešil počet pacientů, kteří obdrží kumulativní efektivní dávku (CED, cumulative effective dose) vyšší než 100 mSv. Jen pro upřesnění proč zrovna mezní hodnota 100 mSv. Efektivní dávka 100 mSv bývá často označována jako hranice mezi „nízkými“ a „vysokými“ dávkami, u dávek nad 100 mSv byla ve studiích statisticky prokázána vyšší pravděpodobnost vzniku stochastických účinků.

Ze studií vyplynulo, že kumulativní dávku vyšší než 100 mSv obdrží 1,5 % pacientů, pro různé nemocnice se tato hodnota pohybovala mezi 0,6-3,4 % pacientů. V průměru se dá říct, že každý stý pacient obdrží kumulativní dávku z CT vyšetření vyšší než 100 mSv. Maximální počet CT vyšetření na jednoho pacienta byl 109 CT vyšetření, což mi popravdě přijde neuvěřitelné…

Následně Madan Rehani publikoval další článek (viz níže), ve kterém uvádí, že ve 35 zemích OECD se dá předpokládat, že přibližně 2,5 mil. pacientů obdrží kumulativní efektivní dávku vyšší než 100 mSv v průběhu pěti let.

V tomto naposled zmiňovaném článku se objevil odhad počtu pacientů s kumulativní efektivní dávkou vyšší než 100 mSv pro různé země (viz obr. 1), včetně České republiky. V České republice obdrží pravděpodobně 1 pacient na 1 tis. obyvatel kumulativní efektivní dávku vyšší než 100 mSv za pět let. Při počtu 10,5 mil. obyvatel to znamená, že za oněch pět let máme v ČR přibližně 10,5 tis. pacientů s kumulativní efektivní dávkou vyšší než 100 mSv. Což není úplně málo. Další šokující zjištění na základě analýzy dat přišlo následně, když se zjistilo, že více než 1 tis. pacientů obdržel za jeden den kumulativní efektivní dávku vyšší než 100 mSv a 31 tis. pacientů obdrželo kumulativní efektivní dávku vyšší než 50 mSv za jeden den. To znamená, že tito pacienti podstoupili i několik CT vyšetření během jednoho dne (navíc zde nejsou zahrnuty ještě další radiodiagnostické, případně radioterapeutické výkony, např. intervenční výkony, u který pacienti také mohou v jednom sezení obdržet několik desítek mSv). Často se vůbec nejednalo o starší pacienty, 20 % pacientů bylo mladší než 50 let, tj. každý pátý pacient. Z hlediska indikací, a tedy onemocnění, se ukázalo, že 10 % pacientů bylo indikováno k CT vyšetření z důvodu nemaligního onemocnění.

Obr. 1: Počet pacientů s kumulativní efektivní dávkou vyšší než 100 mSv za 5 let normovaný na 1000 obyvatel

Použitá literatura
Rehani, M. Radiation doses in recurrent imaging: Where do we stand and way forward? Technical meeting on the justification and optimization of protection of patients requiring multiple imaging procedures. IAEA, October 19-23, 2020

Jaká je role klinického radiologického fyzika?

V tomto příspěvku bych ráda řekla něco více o tom, jaká je a kam směřuje role klinického radiologického fyzika (KRF) v radiodiagnostice a intervenční radiologii. Budu při tom vycházet z nově vydané knihy Clinical Imaging Physics. Current and emerging practice, která se mi nedávno dostala do rukou. Hlavním editorem byl profesor Ehsan Samei, takže už toto jméno samo o sobě říká, že knížka bude zajímavá a na dobré úrovni.

Když se vrátíme o dekádu zpět, tak hlavním úkolem KRF v radiodiagnostice bylo testování rtg systémů, tj. primárně šlo o provádění zkoušek dlouhodobé stability a zkoušek provozní stálosti (přístup k testování se pro každé pracoviště liší, někde byly a jsou zkoušky prováděny externími subdodavateli), a případně také stanovení diagnostických referenčních úrovní. V posledních letech k tomu přibylo také provedení externích klinických auditů. Nicméně ta jeho hlavní role v dnešní době se posouvá více do klinické části a o tom si právě dnes řekneme.

Na začátku si vypůjčím hned první tabulku z citované publikace, viz obr. 1. V tabulce je skvěle shrnuto, co se očekává od KRF. Ačkoliv je to myšleno obecně, pod tabulkou je pak volný překlad a objasnění, co je tím myšleno primárně v radiodiagnostice a intervenční radiologii.

Obr. 1: Očekávání a klíčové činnosti klinického radiologického fyzika [1]

  • Ad 1) „Vědec v místnosti“: KRF je člověk, který by ze své podstaty měl mít vědecké myšlení a porozumět tzv. evidence-based přístupu. Tedy dokáže analyzovat závěry plynoucí z různých publikací, porozumět limitacím a poznatky technicky převést do klinické praxe v konkrétních situacích.
  • Ad 2) Zajištění kvality a bezpečnosti: KRF by měl v klinické praxi zajistit požadovanou kvalitu, přesnost a bezpečnost napříč všemi zobrazovacími systémy. Existuje nepřeberné množství zobrazovacích systémů a z neznalosti a neoptimálního nastavení některých těchto systémů mohou vznikat chyby v diagnostice. KRF by měl být schopen zajistit, aby každý systém poskytoval to, co od něho klinik, který na něm pracuje, očekává, z hlediska kvality obrazu a bezpečnosti, aby se tak co nejvíce zamezilo možným chybám.
  • Ad 3) Splnění požadavků regulátorů: KRF by měl zajistit, že rtg systémy a praxe při provádění různých výkonů bude splňovat požadavky kladené regulátory, např. soulad s atomovým zákonem a příslušnými vyhláškami. Od KRF se očekává velmi aktivní přístup při aplikaci nových poznatků (měl by být inovátor), protože legislativa je většinou o krok pozadu a není tedy možné očekávat, že se nové techniky objeví tak rychle v různých dokumentech a doporučeních.
  • Ad 4) Relevantní hodnocení technologie: KRF by měl být schopen zhodnotit, zda daná zobrazovací technologie umožňuje dosažení požadovaného výsledku, a to zejména v kontextu prováděných testů a měření (QC), avšak uzpůsobit tato měření na hodnocení celkového výstupu ze systému neboli přejít od compliance-based (dodržení toho, co tvrdí výrobce a co je dáno legislativou) k performance-base hodnocení.
  • Ad 5) Optimalizace: Jedna z velmi podstatných činností, kterou by měl provádět KRF v týmu společně s radiologem, radiologickým asistentem a případně také aplikačním technikem. Každému pracovišti vyhovuje jiný přístup, proto obecné nastavení od výrobce nemusí být vždy ideální a je potřeba přizpůsobit zobrazovací techniku potřebám daného pracoviště. Jedná se o nastavení zobrazovacího řetězce, zejména z hlediska kvality obrazu (včetně postprocessingu) a dávky tak, aby systém skutečně poskytoval maximum z toho co umí, nikoliv aby se stalo, že systém v rámci různých testů a měření prokáže skvělé charakteristiky, které se však v klinické praxi pak neuplatní.
  • Ad 6) Sledování (monitorování) situace: Tím je zde myšlena retrospektivní analýza aktuálního přístupu nejen z hlediska optimalizace, ale i z hlediska kvality a bezpečnosti celého zobrazovacího řetězce a případných komplikací vznikajících z jiných důvodů než neoptimálního nastavení techniky.
  • Ad 7) Pořízení nové technologie: KRF by měl umět zanalyzovat výhody a nevýhody různých zobrazovacích systémů a to nejen obecně, ale také z hlediska výkonů a potřeb jednotlivých pracovišť, aby pak nově pořízené zobrazovací systémy vyhovovali požadavkům kliniků, tj. aby byly ušity na míru daných pracovišť. S tím souvisí zavádění nových technik, např. v dřívější době zavedení přímé digitalizace, cone-beam CT, pokročilejší rekonstrukce atd.
  • Ad 8) Převzetí technologie: Tímto bodem je myšlen správný postup při zavádění nového systému do klinické praxe. Např. při zakoupení nového zobrazovacího systému by měl být KRF nápomocen z hlediska technických znalostí radiologovi a radiologickému asistentovi, aby se správně nastavil přístup k použití nového systému.
  • Ad 9) Spolupráce s výrobcem: To je bod, který bohužel není příliš relevantní v České republice. K výrobci se téměř nikdo z nás nedostane a maximum, co pro nás mohou čeští zástupci výrobců udělat je, že předají naše požadavky dále, aby se dostali až k výrobcům a ti je pak případně mohli zhodnotit a zkusit aplikovat při dalším vývoji. Každý výrobce má různě po světě několik svých referenčních pracovišť, kde probíhá testování zobrazovacích systémů v praxi a jejich další modifikace, ale obecně v České republice až na výjimky spolupráce s výrobci příliš nerozkvétá.
  • Ad 10) Posun v praxi: KRF by měl být nápomocen při zlepšování klinické praxe, aby dokázal zanalyzovat a v klinické praxi uplatnit nové poznatky, a tím tu praxi posunout dále.
  • Ad 11) Konzultant pro výzkum: KRF by měl být schopen poskytnout relevantní publikace a rady v různých vědeckých projektech týkajících se zobrazování.
  • Ad 12) Poskytovatel dalšího vzdělání: KRF by měl být schopen dále vzdělávat kliniky, resp. pracovníky pracující se zobrazovacími systémy, z hlediska použití zobrazovací systémů, např. jak systém funguje a jak nefunguje :), ale také z hlediska radiační ochrany a optimalizace.

Ještě bych se vrátila k bodu 1). Každý radiologický fyzik v rámci svého studia získá velmi dobré fyzikální a matematické základy a také analytické myšlení. Na tom je dále stavěna odborná část – dozimetrie, detekce, zobrazovací technika, zpracování obrazu. K tomu se přidávají i znalosti z lékařské oblasti – anatomie, patologie, patofyziologie, radiobiologie… A propojením všech těchto oblastí dohromady by KRF  měl být odborníkem, který dokáže analyzovat různé problémy a navrhnout k nim smysluplné řešení nebo změnu přístupu, např. na základě odborných publikací, který bude vhodnější, bezpečnější, konzistentnější a za přijatelnou cenu (finanční náklady, ale také z hlediska zdravotní újmy). Tohoto bychom měli využívat v naší práci a být tím „mozkem“, který posune klinickou praxi dále (skvěle to popisuje jeden slogan, který jsem nedávno zahlédla v jedné přednášce „Today’s research is tomorrow‘ s practice“), samozřejmě ve spolupráci s lékaři, nejen radiology, radiologickými asistenty, servisními a aplikačními techniky. My, kliničtí radiologičtí fyzici :), bychom měli být ti, co vědí, jak daná technologie funguje, jak ji správně používat a optimalizovat, abychom nezpůsobili více škody než užitku. Některé z výše uvedených bodů bohužel nemohou splnit externí radiologičtí fyzici, protože se jedou na pracoviště pouze občas podívat, tak doufejme, že v budoucnu bude stále více těch, kteří opravdu jsou v té jedné nemocnici a snaží se splnit to, co se od nich očekává ;).

Použitá literatura
[1] Samei E, Pfeiffer DE. Clinical imaging physics. Current and emerging practice. Wiley Blackwell 2020; ISBN 9781118753453

Nový webový software pro odhad dávek na plod z CT vyšetření

Občas je v klinické praxi potřeba odhadnout dávku na plod z některých rtg vyšetření, typicky CT vyšetření, které mohlo být provedeno např. při nerozpoznaném těhotenství v době CT vyšetření. Způsobů, jak lze provést odhad dávky na plod, je několik. Jedním ze způsobů je použití vhodných konverzních koeficientů (více zde), pomocí kterých se převede hodnota CTDIvol na dávku na plod. Dalším ze způsobů je použití vhodného softwaru, nejčastěji založeného na Monte Carlo simulacích. Určitě bych neměla zapomenout ještě jeden způsob jak odhadnout dávku na plod, a to měřením na antropomorfním fantomu. Jedná se o komplikovaný a časově velmi náročný způsob, proto se upřednostňují ony dva způsoby zmíněné výše.

Přehled softwarů pro odhad dávky na plod byl uveden již dříve. Ze softwarů se jako vhodný a snadno přístupný jeví software CODE, vyvinutý kolegy, radiologickými fyziky, na University of Crete. Jedná se o software přístupný bezplatně po přihlášení. Software, o kterém si řekneme nyní, je k dispozici již pár týdnů a výhodou je přístup bez jakékoliv registrace a poplatku.

Jedná se o webový, volně přístupný software umístěný na www.fetaldose.org. Software vyvinuli na University of Zurich ve Švýcarsku. Rozhraní softwaru je uvedeno na obr. 1.

Obr. 1: Rozhraní webového softwaru Fetaldose

Jak je patrné z obr. 1, je pro odhad dávky na plod potřeba pouze několik málo vstupních hodnot. Jedná se o fázi těhotenství, na výběr je ze tří možností: 0.-3., 3.-6. nebo 6.-9. měsíc. Dále elektrický potenciál (napětí), na výběr je z pěti možností: 100, 110, 120, 130 a 140 kV. Není k dispozici nižší hodnota než 100 kV. A nakonec ještě objemový kermový index CTDIvol, který umožňuje použití předpočítané hodnoty CTDIvol normalizované na dávku na plod. Jako nepovinný parametr je pak možné zadat i obvod pacientky v místě dělohy. Tento parametr zpřesňuje odhad dávky na plod (odhad dávky na plod z fetaldose.org v porovnání s hodnotami odhadnutými pomocí Monte Carlo simulací), relativní chyba se pak pohybuje v hodnotách -20 % až +21 %, zatímco bez korekce na obvod pacientky je relativní chyba -36 % až +28 %. Před výpočtem je ještě potřeba zadat rozsah CT skenu. Poté se již pouze stiskne tlačítko „calculate“ a software zobrazí odhad dávky na plod.

Výhodou softwaru je jeho nezávislost na výrobci a požadavek pouze na několik málo lehce dostupných parametrů CT skenu. Dále také to, že je pacientsky specifický, protože je možné zadat obvod pacientky, na základě kterého je pak provedena korekce dávky na plod, aby byl odhad přesnější. Nevýhodou je to, že jsou simulovány pouze tři fáze gravidity – 3., 6. a 9 měsíc, nic mezi tím.

Software byl validován na dvou CT skenerech na 29 těhotných pacientkách (retrospektivně), které podstoupily akutně CT vyšetření břicha nebo se jednalo o traumatologickou indikaci. Autoři v článku popisujícím software fetaldose.org uvádějí, že při porovnání jejich odhadu s odhadem pocházejícím z jiného komerčně dostupného softwaru, konkrétně Radimetrics, došli k relativnímu rozdílu 10 %. Dokonce byly jejich odhady bližší hodnotám pocházejícím z Monte Carlo simulací než odhady jiného komerčně dostupného softwaru.

Závěrem bych řekla, že se jedná o užitečný a lehce dostupný nástroj pro odhad dávky na plod, aby radiologický fyzik věděl, v jakých hodnotách se dávka pohybuje a na základě toho doporučil další postup. Vřele doporučuju si tento software zapamatovat :).

Použitá literatura
Saltybaeva N, Platon A, Poletti PA, et al. Radiation dose to the fetus from computed tomography of pregnant patients – Development and validation of web-based tool. Investigative Radiology 2020;

Proč potřebujeme diagnostické displeje pro zobrazení v radiologii? (3)

Při pravidelném testování diagnostických displejů je potřeba proměřit alespoň několik bodů GSDF křivky, aby se dalo zjistit, zda funguje displej z hlediska luminance podle požadavků GSDF křivky.  American Association of Physicists in Medicine (AAPM) ve svém starším doporučení TG18 doporučovala jako dostatečné pro QC proměření alespoň 18 bodů. Nicméně toto doporučení bylo primárně vytvořeno pro CRT displeje, nikoliv LCD displeje, které v dnešní praxi převažují. A právě pro LCD displeje není těchto 18 proměřených bodů dostatečných k tomu, aby se prokázal souhlas s GSDF křivkou. Ukázka nesouhlasu je uvedena na obr. 1.

Obr. 1: Výřez měření GSDF křivky pro prvních 20 hodnot [8]

V případě, že byl proměřen pouze první a poslední bod uvedeného výřezu, displej splnil požadavky GSDF křivky v rámci tolerance. Ale v případě, že byly změřeny i body mezi těmito okrajovými hodnotami, ukázalo se, že displej nesplňuje požadavky GSDF křivku v rámci tolerance, hlavně pro body 3-13. V novějším doporučení AAPM TG270 se proto již doporučuje proměřit alespoň 52 bodů.

Proveďme si nyní proměření displeje alespoň pro těch 18 bodů dle TG18.

Máme DICOM obrazy s hloubkou 12 bitů, tedy 2^12 = 4096 stupňů šedi, tedy 4096 P-hodnot. Obrazů máme pouze 18. Abychom těmito obrazy rovnoměrně pokryli interval P-hodnot, které jsou v rozsahu 0-4095, mají jednotlivé obrazy následující P-hodnoty: 0, 240, 480, 720, 960, 1200, 1440, 1680, 1920, 2160, 2400, 2640, 2880, 3120, 3360, 3600, 3840 a 4080. Ukázka prvního obrazu a pak každého druhého je uvedena na obr. 2.

Obr. 2: Obrazy dle TG18 pro kontrolu zobrazení dle GSDF křivky

Nejprve se změří maximální L_max a minimální L_min kalibrovaná luminance. Nechť je L_max = 0,98 cd/m^2 a L_min = 535,2 cd/m^2 (reálné hodnoty odpovídající jednomu z našich displejů). Tomu dle vztahu (1) z předešlého příspěvku odpovídají hodnoty JND indexů JND_min = 70,67 a JND_max = 716,10. Pak JND_tot = 716,10 – 70,67 = 645,43. Nyní si stanovíme vztah mezi JND indexy a P-hodnotami pomocí JND_ave:

Pomocí vztahu (3) opět z předešlého příspěvku, který ale pro úplnost uvádím i níže, dopočítáme hodnoty JND indexů pro všech zbývajících 16 P-hodnot (první a poslední již máme).

Vztah (3) z předešlého příspěvku:

Pro jednotlivé P-hodnoty dostáváme následující hodnoty JND indexů:
Pro P = 0: JND_P(0) = 70,67 + 0*0,158 = 70,67
Pro P = 240: JND_P(240) = 70,67 + 240*0,158 = 108,59
Pro P = 480: JND_P(480) = 70,67 + 480*0,158 = 550,83
Pro P = 720: JND_P(720) = 70,67 + 720*0,158 = 184,43

Pro P = 4080: JND_P(4080) = 70,67 + 4080*0,158 = 715,31

Máme tedy hodnoty všech 18 JND indexů, ke kterým ze vztahu (2) opět z předešlého příspěvku dopočítáme luminanci L z GSDF křivky. Hodnoty jsou následující (tučně zvýrazněné luminance jsou změřené luminance):

Dále změříme luminanci pro každý z 18 obrazů fotometrickou sondou. Změřené hodnoty luminance jsou následující:

Porovnáme-li hodnoty změřené luminance a dopočítané luminance z GSDF křivky ze dvou předešlých tabulek, musí pro splnění požadavků platit, že hodnoty pro tentýž bod křivky se od sebe liší pouze v rámci tolerance, tj. pro primární diagnostické monitory se mohou od sebe lišit maximálně o ±10 %. Liší-li se více, pak je potřeba displej překalibrovat, protože nevyhovuje GSDF křivce. Ukázka GSDF křivky s dopočítanými luminancemi včetně křivek tolerance ±10 %, ale také ±20 % jsou uvedeny na obr. 3. Jsou zde uvedeny také hodnoty změřené luminance.

Obr. 3: Změřené luminance a GSDF křivka s tolerancemi

Pro testování se však nepoužívá přímo porovnání jednotlivých měřených bodů s GSDF křivkou (tak jak je na obr. 3), protože splnění či nesplnění tolerance je hůře viditelné, ale pro zjednodušení se stanoví relativní změna d = dL/L luminance v daném intervalu (vždy pro dva sousední body) z následujícího vztahu (1):

kde L_k je luminance pro P-hodnotu k, L_k+q je luminance pro P-hodnotu k+q. Ke křivce GSDF jsou dopočítány tolerance ±10 %, případně ±20 %, a z graficky vynesených bodů je pak ihned zřejmé, je-li luminance bodu v toleranci či nikoliv. Hodnoty dL/L stanovené z GSDF křivky včetně tolerance ±10 % a ±20 % a hodnoty dL/L ze změřené luminance jsou uvedeny na obr. 4.

Obr. 4: Hodnoty dL/L z GSDF křivky včetně tolerancí a hodnoty ze změřené luminance

Ukázka displeje nevyhovujícího GSDF křivce ani v rámci tolerance je uvedena na obr. 5. Jednalo se o běžný kancelářský displej.

Obr. 5: Ukázka hodnot displeje nevyhovujícího GSDF křivce

Většina displejů, i běžných kancelářských, splní požadavky GSDF křivky v nějaké její části, většinou prostřední, avšak nesplní požadavky v krajních částech, tj. v oblasti velmi tmavých a velmi světlých stupňů šedi. To je také případ displeje na obr. 5. A to je právě to, v čem se odlišují diagnostické displeje od ostatních displejů.

Subjektivní kontrast vnímaný lidským okem v tmavé části GSDF křivky je velmi ovlivněn okolní luminancí. Na obr. 6 jsou uvedeny křivky změřené při různé okolní luminanci. Okolní luminanci ovlivňuje mnoho věcí, samozřejmě okolní osvětlení, ale např. také výmalba místnosti (bílá vs. černá), zda má lékař bílý plášť. V USA je na některých pracovištích dokonce zakázáno, aby lékař vstupoval do popisovny v bílém plášti a stěny popisoven jsou natřeny černou barvou. Report AAPM TG270 doporučuje, aby při kalibraci displeje byla zohledněna okolní luminance, přičemž by mělo platit, že okolní luminance nebude vyšší než 1/4 minimální kalibrované luminance L_min. S vyšší okolní luminancí se samozřejmě předpokládá, že bude vyšší minimální kalibrovaná luminance L_min. V případě, že nebude při kalibraci brána v potaz okolní luminance, se může stát, že vizuální sytém člověka nerozpozná kontrast na úrovni tmavých odstínů šedi a může tak dojít k přehlédnutí patologie.

Obr. 6: Vliv okolní luminance na subjektivní kontrast vnímaný okem [8]

Použitá literatura
[1] Pianykh OS. Digital Imaging and Communications in Medicine (DICOM). Springer, 2012.
[2] Fetterly KA, Blume HR, Flynn MJ, et al. Introduction to grayscale calibration and related aspects of medical imaging grade liquid crystal displays. Journal of Digital Imaging, 2008; 21(2): 193-207.
[3] http://dicom.nema.org/medical/dicom/current/output/pdf/part14.pdf
[4] https://siim.org/page/displays_chapter3
[5] http://www.otpedia.com/entryDetails.cfm?id=226
[6] http://fyzika.jreichl.com/main.article/view/535-fotometricke-veliciny
[7] https://en.wikipedia.org/wiki/Luminance
[8] https://www.aapm.org/pubs/reports/RPT_270.pdf
[9] Silosky MS, Marsh RM. Performance characteristics and quality assurance considerations for displays used in interventional radiology and cardiac catheterization facilities. J Appl Clin Med Phys 2018; 19(5): 708-717

Proč potřebujeme diagnostické displeje pro zobrazení v radiologii? (2)

V předešlém příspěvku jsme si řekli o GSDF křivce, která je založena na percepční linearizaci. GSDF křivka byla stanovena na základě Bartenova modelu, který simuluje vizuální systém člověka, přičemž cílem bylo, aby pozorovatel vnímal obraz na každém displeji podobně, bez ohledu na luminanci daného displeje. Při modelování vizuálního systému člověka byl pro různé stupně šedi zjišťován minimální rozdíl v luminanci objektu a okolí, který pozorovatel již zaznamená nebo rozpozná. Pro tento rozdíl v luminanci byla zavedena veličina JND – Just Noticeable Difference. Definice JND dle DICOM NEMA Standardu (str. 17) je následující: „The luminance difference of a given target under given viewing conditions that the average human observer can just perceive.“

GSDF křivka popisuje závislost luminance L, se kterou se zobrazí určitá hodnota JND indexu j, na dané hodnotě JND indexu j. Znázornění GSDF křivky odvozené z Bartenova modelu je uvedeno na obr. 1.

Obr. 1: GSDF křivka odvozená z Bartenova modelu [3]

Zjednodušeně se dá říct, že GSDF křivka vyjadřuje změnu v luminanci na určité úrovni luminance, která odpovídá změně JND indexu j o hodnotu 1. Hodnotu JND indexu j z luminance L lze dopočítat dosazením do následujícího vztahu (1):

Pro opačný výpočet, tedy luminance L z JND indexu j, lze použít následující vztah (2):

Hodnoty JND indexu j a odpovídající luminance jsou tabulovány v dokumentu DICOM NEMA Standard (kdyby někdo preferoval vyhledání v tabulce proti výpočtu ze vztahů (1) nebo (2)), ukázka malé části tabulky je uvedena na obr. 2.

Obr. 2: Část tabulky pro převod JND indexu na luminanci a opačně [3]

Kalibrace displeje
Při kalibraci displeje je nutné nejprve převést vstupní hodnoty signálu, tzv. P-hodnoty (někdy označované také jako digital driving levels, DDL) rtg obrazu na hodnoty JND indexů a těm přiřadit určitou luminanci tak, aby průběh této křivky odpovídal GSDF křivce. Takže jde v podstatě o přizpůsobení GSDF křivky bitové hloubce obrazu a maximální a minimální kalibrované luminanci displeje.

Mějme maximální L_max = 200 cd/m^2 a minimální L_min = 0,50 cd/m^2 kalibrovanou luminanci, tak jak jsme si ji popsali v předešlém příspěvku. Těmto hodnotám podle vztahu (1) uvedeného výše dopočítáme hodnotu JND indexu. Tedy dostáváme JND_max = 572,2 a JND_min = 46,6. Pak JND_tot neboli celkový počet JND, které můžeme při těchto luminancích zobrazit, je roven JND_tot = 572,2 – 46,6 = 525,6.

Většina displejů pracuje s hloubkou 8 bitů = 256 stupňů šedi neboli 256 P-hodnot (DDL hodnot), čemuž odpovídají P-hodnoty 0 až 255. Celý interval luminancí, pro náš příklad luminance v rozsahu 46,6 až 572,2, rozdělíme na 255 menších intervalů tak (255 proto, protože poslední bod s hodnotou 255 už nemá pokračující křivku za sebou, je to poslední bod křivky), aby vždycky rozdíl v luminanci v rámci jednoho intervalu znamenal konstantní změnu JND indexu j. Takže dostáváme průměrný počet JND indexů JND_ave na jeden interval P-hodnoty. Pro náš případ JND_ave = 525,6 / (256-1) = 525,6 / 255 = 2,06. Takže na jednu P-hodnotu připadají cca dvě hodnoty JND indexu. Hodnotu JND_P pro vstupní P-hodnotu pak vypočítáme ze vztahu (3):

Podíváme-li se na tvar vztahu (3), je zřejmé, že závislost mezi P-hodnotami a příslušnými JND indexy je lineární.

Konkrétně pak platí:
Pro P = 0: JND_P(0) = 46,6 + 0*2,06 = 46,60
Pro P = 1: JND_P(1) = 46,6 + 1*2,06 = 48,66
Pro P = 2: JND_P(2) = 46,6 + 2*2,06 = 50,72

Pro P = 255: JND_(P(255) = 46,6 + 255*2,06 = 571,6

Tím jsme přiřadili každé P-hodnotě jednu konkrétní hodnotu JND indexu. Ze vztahu (2) dopočítáme každé hodnotě JND indexu příslušnou hodnotu luminance:
L(JND = 46,6 (P=0)) = 0,50 cd/m^2
L(JND = 48,66 (P=1)) = 0,53 cd/m^2
L(JND = 50,72 (P=2)) = 0,57 cd/m^2

L(JND = 571,6 (P=255)) = 199,3 cd/m^2

Takže jsme nakonec přiřadili každé P-hodnotě jednu konkrétní hodnotu luminance L(JND(P)).

Kalibrovaný displej musí pracovat tak, že každý vstupní signál neboli P-hodnotu zobrazí s odpovídající luminancí L, která vyplývá z GSDF křivky. Při kalibraci se akceptuje tolerance ±10 % od GSDF křivky pro primární diagnostické displeje a ±20 % pro ostatní medicínské displeje (např. v ovladovně). Liší-li se změřená luminance L(P) pro P-hodnotu od GSDF křivky o více než je povolená tolerance, pak displej nesplňuje požadavky na kalibraci podle GSDF křivky a je potřeba ho překalibrovat.

GSDF křivku je možné použít pro kalibraci displejů, ale také pro hodnocení vlastností kalibrovaného i nekalibrovaného displeje. Taková ukázka je uvedena na obr. 3.

Obr. 3: Ukázka závislosti luminance na DDL (P-hodnotě) pro kalibrovaný a nekalibrovaný displej [2]

Z obr. 3 je zřejmé, že obraz nekalibrovaného displeje bude trpět nedostatečnou kvalitou u nízkých hodnot (odstíny černé) a také u vysokých hodnot. Pro úplnost ještě uvádím graf (obr. 4) závislosti JND na DDL (P-hodnotách) pro tytéž displeje jako na obr. 3. Pro kalibrovaný displej je závislost lineární (jak ostatně vyplynulo již ze vztahu (3) výše), pro nekalibrovaný nikoliv.

Obr. 4: Závislost JND na DDL (P-hodnotě) [2]

Použitá literatura
[1] Pianykh OS. Digital Imaging and Communications in Medicine (DICOM). Springer, 2012.
[2] Fetterly KA, Blume HR, Flynn MJ, et al. Introduction to grayscale calibration and related aspects of medical imaging grade liquid crystal displays. Journal of Digital Imaging, 2008; 21(2): 193-207.
[3] http://dicom.nema.org/medical/dicom/current/output/pdf/part14.pdf
[4] https://siim.org/page/displays_chapter3
[5] http://www.otpedia.com/entryDetails.cfm?id=226
[6] http://fyzika.jreichl.com/main.article/view/535-fotometricke-veliciny
[7] https://en.wikipedia.org/wiki/Luminance
[8] https://www.aapm.org/pubs/reports/RPT_270.pdf
[9] Silosky MS, Marsh RM. Performance characteristics and quality assurance considerations for displays used in interventional radiology and cardiac catheterization facilities. J Appl Clin Med Phys 2018; 19(5): 708-717

Proč potřebujeme diagnostické displeje pro zobrazení v radiologii? (1)

Mějme CT obraz s hloubkou 10 bitů, tj. 2^10 = 1024 stupňů šedi. V případě, že budeme mít obraz v původním DICOM formátu, všechny tyto stupně šedi můžeme současně zobrazit na displeji s vhodnými vlastnostmi a s použitím vhodného softwaru. Ale jakmile tento obraz převedeme do formátu BMP nebo JPEG, které podporují pouze 256 stupňů šedi (hloubka 8 bitů), ztrácíme tím onu „hloubku“ obrazu (stupně šedi). Je-li obraz převeden z hloubky 10 bitů na 8 bitů, cesta zpět na 10 bitů není možná. To je důvod, proč se v radiologii vždy preferuje původní formát dat (DICOM) nad všemi jinými.

Mějme tedy onen zmíněný CT obraz s 1024 stupni šedi. Na běžném kancelářském displeji určitě rozeznáme některé druhy tkání, např. kost, játra, mozek. I běžný displej dokáže převést 1024 stupňů šedi na těch 256, které dokáže zobrazit, viz obr. 1 vlevo. Ale nedokáže zobrazit všech 1024 stupňů šedi najednou, jako to dokáže diagnostický displej. Nicméně je možné použít windowing a levelling a mezi těmi 1024 stupni šedi postupně přecházet, viz obr. 1 uprostřed a vpravo.

Obr. 1: Zobrazení s rozsahem 256 stupňů šedi (vlevo) a s rozsahem pro plicní okno (uprostřed) a měkkotkáňové okno (vpravo) [1]

S tím, co jsme si řekli výše, je jasné, že velmi podstatné pro optimální kvalitu zobrazení všech stupňů šedi je to, jaké vlastnosti má displej. Nejdůležitějšími vlastnostmi je luminance a poměr kontrastu.

Jas (anglicky označováno „luminance“), zjednodušeně řečeno, kvantifikuje množství světla, které dokáže vyprodukovat displej. Přesněji, jas je fotometrická veličina, která kvantifikuje intenzitu svítivosti na jednotku plochy v daném směru. Popisuje množství světla, které projde, nebo je emitováno, nebo je difúzně odraženo z určité oblasti v určitém úhlu. Jednotkou jasu je cd/m^2 (kandela na metr čtvereční). Český název je jas, ale budu nadále používat termín luminance.

Na displeji nastavená maximální luminance L_max neboli maximální kalibrovaná luminance je většinou nižší než maximální luminance, kterou displej dovede zobrazit. Některé displeje dokážou zobrazit luminanci až 4000 cd/m^2, což je pro oko naprosto nesnesitelný jas (svítí až příliš), proto se nastavuje kalibrovaná luminance podstatně nižší. Druhý důvod pro nižší luminanci je ten, že při vyšší luminanci se displej dříve vysvítí, takže postupem času se stárnutím displeje luminance snižuje. Tedy nižší hodnota maximální kalibrované luminance vede k delší životnosti displeje. Naopak minimální nastavená luminance neboli minimální kalibrovaná luminance je o něco vyšší, než je minimální luminance, kterou dovede zobrazit displej.

Poměr maximální a minimální luminance, kterou dovede displej zobrazit, dává poměr kontrastu daného displeje. Maximální luminance displeje dosahuje až hodnot 4000 cd/m^2, minimální luminance i hodnot 0,05 cd/m^2 pro LCD displeje, a dokonce 0,00 cd/m^2 pro OLED displeje. Při těchto hodnotách luminance můžeme získat poměr kontrastu i v hodnotách několik tisíc, avšak to není žádoucí.

Obvykle platí, že poměr maximální kalibrované luminance L_max a minimální kalibrované luminance L_min displeje by měl odpovídat vizuálnímu systému člověka. Bude-li poměr 600, nebude rozpoznatelný kontrast v tmavé (černé) oblasti. Vysoký poměr maximální a minimální kalibrované luminance je žádoucí v umělecké digitální tvorbě, avšak nikoliv v radiologii. Na druhé straně, bude-li poměr maximální a minimální luminance nízký, např. 250 a méně, bude se obraz jevit jako nekontrastní, jako by byl vymytý. Dobrý kompromis pro radiodiagnostiku je hodnota mezi 300 a 400, ideálně 350. Budeme-li mít displej s maximální kalibrovanou luminancí 525 a s minimální kalibrovanou luminancí 1,5, bude poměr kontrastu 525/1,5 = 350, což je právě akorát. Avšak hodnoty mohou být klidně posunuty k vyšším nebo nižším hodnotám, např. v závislosti na okolním osvětlení.

Z výše uvedeného lze logicky usoudit, že dostatečná luminance a dostatečně vysoký poměr kontrastu displeje (ale ne zase příliš vysoký) umožňují kvalitnější zobrazení, což znamená kvalitnější interpretaci rtg obrazu z pohledu radiodiagnostiky. Avšak s tím souvisí i správné zobrazení různých stupňů šedi – od černé až po bílou. Pro kvantifikaci byla zavedena tzv. Grayscale Standard Display Function (GSDF). GSDF byla vyvinuta pro objektivní kvantitativní hodnocení zobrazení z hlediska luminance jednotlivých stupňů šedi za cílem zajistit konzistenci zobrazení na různých displejích. Důvodem je to, aby se určitá patologie zobrazila na všech displejích podobně, tj. aby se nestalo, že na některém displeji nebude patologie viditelná, protože se tam stupně šedi zobrazují odlišně. Diagnostické displeje (myšleno displeje určené pro primární diagnostiku) musí být kalibrovány tak, aby se luminance určitých stupňů šedi lišila od očekávané luminance (neboli od GSDF křivky) maximálně v rámci povolené tolerance. Liší-li se více, je potřeba displej překalibrovat.

Člověk by očekával, že GSDF bude lineární, tj. luminance pro daný signál bude lineárně rostoucí s rostoucí hodnotou signálu. Avšak není tomu tak, protože vizuální systém člověka (oko+mozek) nepracuje lineárně. Lidský vizuální systém je mnohem méně citlivý v oblasti černé než v oblasti bílé. To jde vidět na obr. 1 (plnou čarou), kde je znázorněna prahová hodnota kontrastu v závislosti na luminanci.

Obr. 1: Závislost prahové hodnoty kontrastu na luminanci [3]

Z obr. 1 je zřejmé, že pro nižší hodnoty luminance musí být kontrast (rozdíl signálu objektu a pozadí) vyšší, abychom ho okem rozpoznali. Podstatou GSDF křivky je tzv. percepční linearizace neboli přizpůsobení změny luminance našemu vizuálnímu systému.

Zjednodušeně se percepční linearizace dá vysvětlit následovně. Mějme stupně šedi v rozsahu 0-255 (odpovídá hloubce 8 bitů), čím nižší hodnota, tím černější (0 je úplně černá), čím vyšší hodnota, tím bílejší (255 je úplně bílá). Vezmeme-li hodnotu signálu 1, 2, 3 a 4 (stupně černé), kdy je mezi sousedními hodnotami absolutní rozdíl roven 1 (2-1=1, 3-2=1, 4-3=1), tak náš vizuální systém to nebude vnímat podobně jako absolutní rozdíl 1 na úrovni bílé, např. pro hodnoty 252, 253, 254 a 255 (253-252=1, 254-253=1 atd.). Jednoduše proto, protože náš vizuální systém není na odstíny černé tak citlivý. Kalibrace na GSDF křivku ale převádí luminanci na kalibrovaném displeji tak, aby náš vizuální systém vnímal rozdíly v luminanci lineárně. To, jak vnímáme rozdíl mezi sousedními stupni šedi, neboli zobrazený kontrast, samozřejmě závisí také právě na onom displeji.

Více o tom, jak byla stanovena GSDF křivka a jak se provádí kalibrace displeje, si řekneme v následujícím článku.

Použitá literatura
[1] Pianykh OS. Digital Imaging and Communications in Medicine (DICOM). Springer, 2012.
[2] Fetterly KA, Blume HR, Flynn MJ, et al. Introduction to grayscale calibration and related aspects of medical imaging grade liquid crystal displays. Journal of Digital Imaging, 2008; 21(2): 193-207.
[3] http://dicom.nema.org/medical/dicom/current/output/pdf/part14.pdf
[4] https://siim.org/page/displays_chapter3
[5] http://www.otpedia.com/entryDetails.cfm?id=226
[6] http://fyzika.jreichl.com/main.article/view/535-fotometricke-veliciny
[7] https://en.wikipedia.org/wiki/Luminance
[8] https://www.aapm.org/pubs/reports/RPT_270.pdf
[9] Silosky MS, Marsh RM. Performance characteristics and quality assurance considerations for displays used in interventional radiology and cardiac catheterization facilities. J Appl Clin Med Phys 2018; 19(5): 708-717

Použití ochranného stínění u skiaskopicky vedených výkonů

Obecně se dá říct, že u skiaskopicky vedených výkonů, včetně intervenčních výkonů, se nedoporučuje použití ochranného stínění pacienta.

Před použitím ochranného stínění obecně je potřeba uvážit, které radiosenzitivní orgány se při provádění výkonu budou nacházet v primárním svazku a které blízko něho. Takové posouzení je komplikovanější než ve skiagrafii, protože u skiaskopicky vedených výkonů se může projekce měnit velmi rychle a často, např. podle orientace některé cévy nebo dokonce určité části této cévy. [1]

Skiaskopické a angiografické systémy jsou určeny pro dynamické sledování a navádění v reálném čase. Obecně jsou tyto systémy vybaveny dvěma zobrazovacími módy – skiaskopickým a akvizičním. U skiaskopie se používají podstatně menší dávky na pulz (obraz), takže výsledkem je rtg obraz horší kvality, ale získaný s menší dávkou. Skiaskopie se používá jako kontrola při zavádění instrumentária. Akvizice slouží pro zaznamenání průběhu výkonu a výsledku, primárně s nástřikem kontrastní látky. Dávka na pulz (obraz) je vyšší, ale rtg obraz je kvalitnější. Na některých modernějších systémech je i skiaskopický obraz již dostatečné kvality a je možné skiaskopické scény ukládat, proto v některých případech není nutné provádět akvizici, čímž se šetří dávka pacientovi i lékaři provádějícímu výkon.

Vzhledem k použití automatického řízení dávkového příkonu/dávky (ADRC, dávka na detektoru/pulz je udržována stejná bez ohledu na velikost pacienta) je použití ochranného stínění v primárním rtg svazku kontraproduktivní, není-li zaručeno, že stínění nepřekryje senzor ADRC. Dále je potřeba si uvědomit, že v dnešní době se ve většině případů rentgenka nachází pod vyšetřovacím stolem, takže použití ochranného stínění umístěného na pacientovi postrádá smysl a umístění ochranného stínění pod pacienta, aby byly chráněny orgány blízko primárního svazku před rozptýleným zářením, je kvůli nepředvídatelné projekci nemožné. A v neposlední řadě je potřeba si uvědomit také to, že orgány mimo primární svazek obdrží většinu dávky z interního rozptýleného záření, proti kterému ochranné stínění neposkytuje ochranu. Takže u skiaskopicky vedených výkonů, včetně intervenčních, se použití ochranného stínění nedoporučuje.

Stejně jako u skiagrafie i v tomto případě zůstává nejefektivnějším způsobem jak snížit dávku pacientovi správná kolimace a dále pak použití nízkodávkového módu, ať pro skiaskopii nebo akvizice. Při těchto módech je snížena dávka na jeden pulz/obraz, takže výsledná kvalita nemusí být excelentní, nicméně častokrát je postačující. Není-li tomu tak, pak lékař volí mód s dávkou o něco vyšší.

V případě výkonů u těhotných pacientek se ochranné stínění také nedoporučuje. Výkony mimo oblast mezi bránicí a koleny mohou být provedeny bez jakéhokoliv omezení (plodu nic nehrozí). V případě, že by se oblast pánve a břicha nacházela v primárním svazku, doporučuje se uvážit použití metody nevyužívající ionizujícího záření (magnetická rezonance, ultrazvuk). Není-li to možné a je nutné výkon provést, pak by měl být výkon proveden obezřetně. Tedy udržovat dávku na plod tak nízkou, jak je rozumně dosažitelné – použít co nejnižší počet pulzů, co největší kolimaci a z projekcí volit zejména ty, při kterých se plod nenachází v primárním svazku. Avšak nepoužívat ochranné stínění ani jako psychologický efekt, může to způsobit více škody než užitku.

Použitá literatura
[1] British Institute of Radiology. Guidance on using shielding on patients for diagnostic radiology applications. BIR 2020.

Použití ochranného stínění u skiagrafických vyšetření

Obecně se dá říct, že u skiagrafie se nedoporučuje použití ochranného stínění pacienta. Tím je samozřejmě myšleno tzv. kontaktní ochranné stínění, tedy to, které se umisťuje přímo na pacienta, a to buď v primárním rtg svazku nebo mimo primární svazek jako ochrana před rozptýleným zářením. Ale přesto je někdy použití ochranného stínění možné, jen je vhodné vědět, plyne-li z toho nějaký benefit pro pacienta. [1]

Před použitím ochranného stínění je potřeba uvážit, které radiosenzitivní orgány se při daném vyšetření budou nacházet v primárním svazku a které blízko něho. U skiagrafie je takové posouzení komplikovanější také tím, že je potřeba znát i projekci (geometrii), pozici a kolimaci. Cílem aplikujícího odborníka, v případě skiagrafie radiologického asistenta, je to, aby posoudil jak požadovanou anatomii zobrazit, aby okolní orgány byly ozářeny co nejméně. [1]

Ochranné stínění v primárním svazku
U mužů a chlapců je u skiagrafických vyšetření v oblasti pánve možné dobrou kolimací odstranit gonády z primárního svazku, takže ochranné stínění není potřeba. U žen a dívek je bohužel ochranné stínění často umístěno nevhodně a vaječníky nejsou stíněny, protože ani nejde říct, kde přesně se nacházejí vaječníky každé ženy. Variabilitu v umístění vaječníků zjistili autoři studie [2], kteří zakreslily pozice vaječníků u 70 žen vyšetřených ultrazvukem do jednoho obrázku, který je na obr. 1.

Obr. 1: Pozice vaječníků u 70 žen [2]

Vzhledem k tomu, že se může stát, že je ochranným stíněním zastíněna oblast zájmu a vyšetření se musí zopakovat, samozřejmě již bez použití ochranného stínění, tak je použití ochranného stínění sporné. A ve výsledku, i když je ochranné stínění umístěno správně a rtg obraz obsahuje diagnostickou informace, tak se může stát, že ochranné stínění zakryje senzor expoziční automatiky (AEC), která kvůli tomu prodlouží expozici, tedy dojde ke zvýšení dávky, protože rtg systém vyhodnotí zeslabení pacientem se stíněním větší, než by bylo bez použití ochranného stínění.

Dávku některým orgánům přítomným v primárním svazku lze snížit také vhodnou projekcí. Např. při vyšetření srdce a plic je vhodné použít zadopřední projekci, protože dojde k šetření dávky na prsní tkáň. U vyšetření lebky lze šetřit dávku na oční čočku opět použitím zadopřední projekce. Benefit plynoucí z použití zadopřední projekce převýší benefit plynoucí z použití ochranného stínění v primárním svazku v obou těchto případech. [1]

A ještě poslední informace. Při správné kolimaci lze nejen zabránit tomu, aby se některé orgány vyskytly v primárním svazku, ale lze tím také zlepšit kvalitu obrazu, protože je tím redukováno množství rozptýleného záření. [1]

Ochranné stínění mimo primární svazek
Použití ochranného stínění mimo primární svazek s cílem ochránit radiosenzitivní orgány bude mít s největší pravděpodobností efekt pouze tehdy, nachází-li se orgán ve vzdálenosti maximálně 5 cm od primárního svazku. Nachází-li se orgán, který chceme chránit, ve vzdálenosti větší, pak použití ochranného stínění nemá požadovaný efekt. Jak bylo navíc řečeno v předešlém článku, většinu záření obdrží orgány mimo primární svazek z interního rozptýleného záření (cca 70 %), zatímco vnější ochranné stínění odstíní pouze neužitečné záření, případně mimoohniskové záření. [1]

Z důvodů uvedených výše vyplývá, že nejefektivnějším nástrojem pro minimalizaci radiační zátěže u skiagrafických vyšetření zůstává správná kolimace a upravení expozičních parametrů, nikoliv použití ochranného stínění v primárním svazku nebo proti rozptýlenému záření. [1]

Shrnutí ohledně použití (kontaktního) ochranného stínění pro různá vyšetření je uvedeno v tab. 1, společně s doporučením, co je v dané situaci vhodné provést.

Použitá literatura
[1] British Institute of Radiology. Guidance on using shielding on patients for diagnostic radiology applications. BIR 2020.British Institute of Radiology. Guidance on using shielding on patients for diagnostic radiology applications. BIR 2020.
[2] Featherstone C, Harnett AN, Brunt AM. Ultrasound localization of the ovaries for radiation-induced ovarian ablation. Clinical Oncology 1999; 11: 393-397.

Použití ochranného stínění u rtg vyšetření (2)

V předešlém článku byla shrnuta doporučení ohledně použití/nepoužití ochranného stínění ze zmíněné publikace Guidance on using shielding on patients for diagnostic radiology applications. V dnešním příspěvku se podíváme na problematiku použití ochranného stínění blíže.

Aby bylo ochranné stínění používáno efektivně, je potřeba znát hlavní zdroje záření a taktéž množství záření pocházejícího z každého tohoto zdroje. Bavíme se tedy o zdroji primárního záření, ale také o zdroji sekundárního záření.

Primární záření
Jako primární záření je označováno to záření, které vychází z rtg zdroje a které záměrně používáme při rtg vyšetření. Dávkové příkony v primárním svazku se pohybují ve velkém rozsahu a dají se rozdělit do tří kategorií. První kategorii tvoří skiaskopické expozice, u kterých se dávkový příkon pohybuje v rozmezí 1-10 mGy/s. Druhou kategorii tvoří skiagrafie, angiografické akvizice, stomatologická vyšetření a mamografie, u kterých se dávkový příkon pohybuje v rozmezí přibližně 15-25 mGy/s (ale ta expozice u některých vyšetření běží pouze po dobu např. 0,05 s, takže výsledná dávka je nízká). Třetí kategorii tvoří CT vyšetření, u kterých se dávkový příkon pohybuje v rozmezí 50-100 mGy/s. Všechny tyto dávkové příkony jsou minimálně 50x vyšší než dávkový příkon z jakéhokoliv zdroje sekundárního záření, proto je extrémně důležité snažit se omezit množství právě primárního záření např. správnou kolimací nebo upravením expozičních parametrů. [1]

Jedním ze způsobů, jak co nejvíce omezit primární záření, je kolimace clonami (někdy označováno jako clonění). Je-li ve vykolimovaném primárním svazku dávkový příkon 100 %, pak ve vzdálenosti přibližně 2,5 cm od primárního svazku pod clonami je méně než 1 % onoho dávkového příkonu. Správné clonění hraje významnou roli zejména u pediatrické populace, kdy se při nevhodném clonění může stát, že jsou významně ozářeny i sousední orgány (tím, jak jsou děti malé, tak mají orgány naskládané blíže u sebe), ačkoliv nejsou oblastí zájmu. [1]

Sekundární záření
Za zdroje sekundárního záření označujeme všechno ostatní. Zejména jde o neužitečné záření unikající z rentgenky, mimoohniskové záření a rozptýlené záření. To může pocházet ze samotného pacienta, konkrétně z vyšetřované oblasti, z vyšetřovacího stolu nebo různých jiných předmětů vyskytujících se v primárním svazku. [1]

Neužitečné záření unikající z rentgenky všemi směry je redukováno olověným stíněním krytu rentgenky a standardně je tak dávkový příkon méně než 0,3 mGy/hod. Toto záření vzniká v rentgence tehdy, interaguje-li primární svazek s konstrukčními prvky rentgenky, např. s krytem rentgenky, s clonami atd. Tím je pacient při expozici ozářen, ale jak bylo uvedeno o pár řádků výše, dávkový příkon i dávka jsou velmi nízké. [1]

Mimoohniskové záření vzniká tehdy, interagují-li urychlené usměrněné elektrony (usměrněné na malou plošinku na anodovém terčíku) mimo ohnisko, tedy při interakci s různými částmi rentgenky. Jedná se o záření vznikající mimo ohnisko, proto se označuje jako mimoohniskové. Mimoohniskové záření lze omezit dobrou konfigurací primárních a sekundárních clon, ale i tak se mu nemůžeme nikdy úplně vyhnout. Projeví se tak, že u receptoru obrazu s dostatečným dynamickým rozsahem se zobrazí anatomie i mimo kolimovanou oblast, viz obr. 1 (šedá oblast okolo ruky). Avšak bavíme se o dávkovém příkonu cca 500x nižším, než je dávkový příkon v primárním svazku. [1]

Obr. 1: Příspěvek z mimoohniskového záření – šedá oblast okolo vykolimované oblasti [1]

Zdrojem rozptýleného záření je pacient sám a také vyšetřovací stůl, různé polohovací a fixační pomůcky okolo pacienta. Pacientovy orgány mimo primární svazek obdrží určitou dávku rozptýleného záření zejména kvůli internímu rozptylu, kdy se záření odráží od různých orgánů a struktur v těle a šíří se v pacientovi dále (až do vzdálenosti cca 17 cm od primárního svazku). Proti tomuto záření se nelze chránit a to ani ochranným stíněním, které je v tomto případě naprosto neefektivní. Interní rozptýlené záření tvoří přibližně 70 % sekundárního záření, kterým jsou ozářeny orgány mimo primární svazek. [1, 2]

Pro úplnost ještě uvádím přehled dávkových příkonů primárního svazku a sekundárního záření různého původu pro skiaskopii, akvizice a CT.

Tab. 1: Přehled dávkových příkonů primárního a sekundárního záření [1]

Při výběru vhodného ochranného stínění by se pak člověk měl řídit tím, o jakých dávkových příkonech a dávkách se bavíme, ale také tím, je-li možné určitou dávku vůbec nějak odstínit, což je případ např. interního rozptýleného záření. Příště si řekneme něco více o konkrétním použití ochranného stínění při skiagrafii.

Použitá literatura
[1] British Institute of Radiology. Guidance on using shielding on patients for diagnostic radiology applications. BIR 2020.
[2] Iball GR, Kennedy EV, Brettle DS. Modelling the effect of lead and other materials for shielding of the fetus in CT pulmonary angiography. Br J Radiol 2008; 81(966): 499-503.

Použití ochranného stínění u rtg vyšetření (1)

Použití ochranného stínění v primárním rtg svazku je už nějakou dobu hodně diskutovaným tématem. Některé organizace již vydaly své doporučení, jako např. British Institute of Radiology (BIR). A právě na toto doporučení, vydané teprve v březnu 2020 (takže je ještě úplně čerstvé), se v dnešním příspěvku podíváme. Doporučení je ke stažení zde: Guidance on using shielding on patients for diagnostic radiology applications. Na doporučení se s společně s BIR podílel také Institute of Physics and Engineering in Medicine (IPEM) a další organizace.

Obecně již neplatí to, co platilo v 70. letech minulého století, a to že použití ochranného stínění v primárním rtg svazku vždy vede ke snížení dávky. Použití ochranného stínění v primárním rtg svazku může interferovat s expoziční automatikou (AEC), což může způsobit naopak zvýšení dávky, protože AEC vyhodnotí zeslabení zobrazovaného objektu jako vyšší a zvýší tedy elektrické množství, resp. prodlouží délku expozice. Další komplikace, která se s použitím ochranného stínění v primárním rtg svazku objevuje, je nedostatečná diagnostická informace v rtg obraze ve stíněné anatomické oblasti, což může vést k opakování expozice, samozřejmě bez použití stínění. Obecně se v UK již nedoporučuje používat ochranné stínění v primárním svazku ve skiagrafii a intervenční radiologii. Nicméně mnoho pacientů se stále domnívá, že použití ochranného stínění je nezbytné, proto stínění vyžadují a uvádějí tím aplikující adborníky, nejčastěji radiologické asistenty, do rozpaků nebo dokonce do rozporu s dobrou praxí.

I když absence ochranného stínění v primárním rtg svazku je velkou změnou v současné, po dlouhá léta zažité, klinické praxi, tak je potřeba k tomuto kroku přistoupit, protože to moderní rtg technologie umožňuje nebo dokonce vyžaduje. Podle platného principu optimalizace by mělo být cílem rtg vyšetření získání dostatečné diagnostické informace za co nejnižší dávky, nikoliv pouze minimalizace dávky záření pacientovi.

Jak bylo zmíněno již v jednom z předešlých článků, od dob objevu rtg záření až dodnes došlo k velkému snížení dávek obvykle používaných při rtg vyšetřeních. Došlo také ke změně radiosenzitivity tkání a orgánů vyjádřených tkáňovými váhovými faktory, týká se to hlavně prsní tkáně, gonád (velký pokles), tlustého střeva a žaludku. Ke změně tkáňového váhového faktoru gonád došlo z toho důvodu, že se nepodařilo prokázat dědičné účinky záření. Z tohoto důvodu je riziko vzniku dědičných účinků plynoucí z rtg vyšetření včetně CT vyšetření považováno za zanedbatelné. Mimo dědičné účinky je nutné uvážit také stochastické účinky, mezi které patří rakovina. Pravděpodobnost vzniku stochastických účinků závisí na věku, kdy došlo k ozáření jedince. Čím nižší je věk při ozáření, tím vyšší je riziko vzniku radiačně indukovaného poškození v průběhu života. Ochranné stínění gonád bylo zavedeno jako ochrana před dědičnými účinky ozáření, nikoliv jako ochrana před stochastickými účinky. Z důvodu použití podstatně nižších dávek než dříve, dále z důvodu neprokázaných dědičných účinků u lidí a z důvodu zhoršení kvality obrazu ochranným stínění v primárním svazku se nepovažuje použití ochranného stínění gonád za žádoucí.

Jak bylo zmíněno výše, tak použití ochranného stínění v primárním svazku může vést jednak ke zvýšení dávky, ale také k tomu, že není získána požadovaná diagnostická informace, tak se za mnohem efektivnější z hlediska optimalizace považuje správní kolimace a vhodná volba expozičních parametrů! Tímto způsobem lze podstatně více snížit dávku, ale stále mít dostatečnou diagnostickou informaci. Za projev optimalizace se nepovažuje pouhé snižování dávek bez zhodnocení dopadu na diagnostickou výtěžnost, tj. používání ochranného stínění aniž by byla zhodnocena kvalita obrazu z hlediska potřebné diagnostické informace.

Shrnutí vyplývající z vydaného doporučení:

  • Ve většině skiagrafických vyšetření se nedoporučuje použití ochranného stínění pacienta.
  • Také při CT vyšetření se nedoporučuje používat ochranné stínění v primárním rtg svazku z důvodu ovlivnění automatické modulace proudu a vzniku artefaktů. Pro použití ochranného stínění mimo primární rtg svazek je závěr podobný, tj. nedoporučuje se pro případ, že by se ochranné stínění vyskytlo v primárním rtg svazku neúmyslně.
  • mamografii použití ochranného stínění v primárním rtg svazku není z principu možné. Ochrana orgánů nacházejících se v blízkosti primárního rtg svazku, např. štítné žlázy, použitím ochranného stínění se nedoporučuje, protože může zasahovat do rtg obrazu, který je pak nutné opakovat, což ve výsledku představuje podstatně vyšší radiační zátěž.
  • V mamografii při vyšetření těhotné pacientky může být v případě požadavku použito ochranné stínění na břicho pacientky, protože toto stínění nijak neovlivňuje výsledný rtg obraz. Avšak nejedná se o standardní postup.
  • Použití ochranného stínění se u většiny rtg vyšetření ve stomatologii nedoporučuje, výjimkou může být CBCT vyšetření, kdy je použito velké pole zájmu (FoV). V takovém případě se může štítná žláza vyskytnout v primárním rtg svazku, a ochranné stínění tak může přispět ke snížení dávky na štítnou žlázu, avšak podstatně větší efekt má správná volba FoV, je-li to možné.

Použitá literatura
British Institute of Radiology. Guidance on using shielding on patients for diagnostic radiology applications. BIR 2020.

Optimalizace na CT (7)

V několika předešlých příspěvcích jsme se zabývali tím, jak lze provádět optimalizaci na CT. Dalším použitelným nástrojem je využití softwaru pro sledování dávek, např. Radiation Dose Management (dříve Radimetrics), DoseWatch, DOSE atd. Tento typ softwaru je standardně připojený k archivačnímu systému nemocnice PACS, kam odcházejí všechna data ze zobrazovacích modalit ve formátu DICOM, je tam tedy obsažena jak obrazová informace, tak také informace o expozičních parametrech, geometrii a taktéž nějaké dávkové hodnoty. To může být buď pro jednu konkrétní sadu CT dat (jednu vyšetřovanou fázi) nebo i pro kompletně celé CT vyšetření, tedy pro všechny provedené fáze. V tomto případě musí být archivován celý radiation dose structured report, který obsahuje informace o všech fázích, včetně lokalizačního skenu a monitorování průchodu kontrastní látky.

U CT je nejpotřebnějšími dávkovými hodnotami pro odhad dávek pacientů volumetrický kermový index výpočetní tomografie CTDI_vol a součin kermy a délky DLP (P_KL). Samotná hodnota CTDI_vol nenese informaci o velikosti pacienta, proto se za vhodnější považuje veličina SSDE (Size Specific Dose Estimate), kterou již mají některé softwary zavedenu.

Softwary pro sledování dávek umožňují analyzovat data napříč všemi připojenými CT skenery a taktéž napříč všemi vyšetřovacími protokoly napříč jedné nebo více nemocnic, nebo dokonce napříč několika státy (Dose Index Registry, American College of Radiology). Proto může software pro sledování a analýzu dávek obsahovat i statisíce vyšetření, pro která by manuální extrakce dat byla nesmírně časově náročná.

CT vyšetření je možné v rámci jedné nemocnice rozřadit např. podle již výše zmíněných vyšetřovacích protokolů, aby se zjistilo, který CT skener aplikuje na základě určité indikace jakou dávku. Vyšetřovací protokoly proto musí být tzv. indication-based a musí si odpovídat v rámci nemocnice, tj. CT protokol pro vyšetření přítomnosti ledvinových kamenů musí být vytvořen na daném CT skeneru a používán pouze tehdy, hledají-li se ledvinové kameny.

Pro porovnání CT skenerů mezi sebou se nejeví jako vhodné porovnání pouze na základě anatomické oblasti, kdy např. protokol pro vyšetření břicha může být v některých případech standardně používán jako 3-fázový, jinde jako 4-fázový, nebo může být používán pro vyšetření nízkokontrastních jaterních lézí (je vyžadována vysoká kvalita obrazu, aby bylo možné identifikovat nízkokontrastní léze) a jinde pro vyšetření ledvinových kamenů (postačuje nízká kvalita obrazu, protože kameny jsou samy o sobě kontrastní vzhledem k okolní tkáni).

Při porovnání hodnoty je potřeba také zjistit, zda se v datech vyskytují nějaké odlehlé hodnoty, které se často definují jako hodnoty, které se liší od nějaké průměrné hodnoty o více než pět standardních odchylek. V případě, že analyzujeme hodnoty CTDI_vol (při absenci hodnot SSDE), se může stát, že mezi odlehlé hodnoty budou patřit morbidně obézní pacienti, u kterých mohou být hodnoty CTDI_vol velmi vysoké. Další častou chybou může být nesprávná volba vyšetřovacího protokolu, typicky již zmíněná záměna vyšetřovacího protokolu pro vyšetření jater a ledvinových kamenů nebo např. použití protokolu na vyšetření hrudníku při vyšetření břicha, čímž bude hodnota CTDI_vol extrémně vysoká ve srovnání s hodnotami CTDI_vol pro vyšetření hrudníku. Další rozdíl může vzniknout v hodnotě DLP tehdy, je-li u některých pacientů vyšetřována pouze horní část břicha, zatímco u jiných břicho včetně pánve. Tento rozdíl pak samozřejmě nebude zjistitelný při analýze CTDI_vol, ale až při analýze hodnot DLP.

Další rozdíl v dávkách a odlehlost některých hodnot může být způsobena odlišnou velikostí referenčního fantomu, ke kterému je hodnota CTDI_vol vztažena (malý fantom o průměru 16 cm nebo velký o průměru 32 cm). Vyšetřovací protokol na jednom CT skeneru je vztažen k malému fantomu, na jiném skeneru k velkému fantomu. Typicky se to stává u pediatrických protokolů a u protokolů na vyšetření krku. Výsledkem takového porovnání pak může být to, že některý vyšetřovací protokol, případně CT skener, používá podstatně vyšší hodnoty CTDI_vol než jiný CT skener, ačkoliv to v reálu nemusí být pravda.

Dalším důvodem, proč se mohou vyskytovat odlehlé hodnoty i v rámci jednoho vyšetřovacího protokolu na jednom CT skeneru i po korekci na velikost pacienta, tj. při použití hodnot SSDE, je špatná centrace pacienta. Takže i toto je jeden z faktorů, který ovlivňuje výslednou dávku pacientovi, jak jsme si řekli už v předešlém příspěvku.

Software pro sledování dávek je velmi užitečným nástrojem pro optimalizaci, ale vyžaduje relativně hodně práce při přípravě vyšetřovacích protokolů, aby analýza dat skutečně byla užitečná, tj. abychom nesrovnávali dávkové hodnoty pro naprosto odlišné indikace.

V případě postupně probíhající optimalizace na základě kvality obrazu nám může takový software ukázat, jak probíhá postupné snížení dávek pro jednotlivé vyšetřovací protokoly, jak je uvedeno na obr. 1.

Obr. 1: Porovnání DLP hodnot v čase pro různé vyšetřovací protokoly

Použitá literatura
Parakh A, Kortesniemi M, Schindera T. CT radiation dose management: A comprehensive optimization proces for improving patient safety. Radiology 2016; 280(3): 663-673.