Archiv autora: Lucie Súkupová

Obrazové operace (1) – ostření a vyhlazení

Mějme rtg obraz fantomu, který obsahuje nízkokontrastní objekty (na obr. 1 po obvodu celého fantomu) a také vysokokontrastní objekty (na obr. 1 páry čar uprostřed fantomu). Nízkokontrastní objekty se liší svým kontrastem, vysokokontrastní objekty svou velikostí. Tyto dva typy objektů se používají pro popis zobrazovacího systému z hlediska rozlišení kontrastu a prostorového rozlišení.

Obr. 1: Fantom s nízkokontrastními a vysokokontrastními objekty

Použijeme-li „ostřící“ filtr (sharpening), pak se nám změní i obraz. Různé stupně ostřícího filtru jsou znázorněny na obr. 2. Na obr. 3 a 4 jsou zobrazeny profily (tloušťka jeden pixel) podél červených čar z obr. 2. Na obr. 3 jsou pro lepší orientaci znázorněny profily pouze pro normální obraz a dva stupně ostření, na obr. 4 pro normální obraz a tři stupně ostření (pozor na rozsah hodnot na osách Y). „Normální“ obraz je obraz, který již prošel standardním postprocessingem nastaveným na rtg systému, nejedná se o hrubá data.

Obr. 2: Normální obraz (nahoře vlevo), 1. stupeň ostření (nahoře vpravo), 2. stupeň ostření (dole vlevo), 3. stupeň ostření (dole vpravo)

Obr. 3: Profily podél červených čar pro normální obraz a dva stupně ostření

Obr. 4: Profily podél červených čar pro normální obraz a tři stupně ostření

Při použití ostřícího filtru se v obrazu zvýrazňuje vysokofrekvenční složka, tedy šum. Rozdíly mezi sousedními hodnotami pixelů jsou větší (signál v normálním obraze od 5000 do 10000, ve vyostřeném obraze od 0 do 20000). S vyšším stupněm ostření působí obraz více zašuměný. Podíváme-li se na modrý profil na obr. 2, jsme schopni rozeznat tmavší a světlejší čáru (nižší a vyšší signál – zeslabující materiál a vzduch). Je-li stupeň ostření větší, profil má najednou větší výkyvy (zelený profil), čím dál hůře se rozpoznává, co bylo v původním obraze. Z oranžového profilu (nejvyšší stupeň ostření) již není vůbec patrný původní obraz.

Ostřením lze alespoň částečně zlepšit prostorové rozlišení, protože jsou některé informace v obraz zvýrazněny, jiné potlačeny. Do obrazu však není přidána nová informace. Na obr. 2 vlevo nahoře je rozeznatelných cca 15 párů čar. Na obr. 2 vpravo nahoře je to ještě o něco více, cca 16 párů čar. Na obr. 2 vlevo dole je to ještě o jeden pár více, tedy 17 párů čar, avšak na obr. 2 vpravo dole už je rozlišitelnost párů čar významně ovlivněna šumem.

Ostřící filtry se v rtg diagnostice, zejména na CT, používají pro popis detailních struktur, např. kostí, nebo pro angiografie.

Opačný efekt na obraz má vyhlazovací filtr. Různé stupně vyhlazení (větší krok než pro ostřící filtry, protože rozdíl mezi po sobě jdoucími stupni není příliš viditelný) jsou znázorněny na obr. 5. Na obr. 6 jsou zobrazeny profily (tloušťka jeden pixel) podél kratších červených čar z obr. 5. Na obr. 7 jsou zobrazeny profily pro delší červené čáry z obr. 5.

Obr. 5: Normální obraz (nahoře vlevo), 2. stupeň vyhlazení (nahoře vpravo), 5. stupeň vyhlazení (dole vlevo), 10. stupeň vyhlazení (dole vpravo)

Obr. 6: Profily podél kratších červených čar pro normální obraz a několik stupňů vyhlazení

Obr. 7: Profily podél delších červených čar pro normální obraz a několik stupňů vyhlazení

Pro lepší přehlednost jsou na obr. 8 zobrazeny profily od pixelu 25 dále.

Obr. 8: Profily podél delších červených čar pro normální obraz a několik stupňů vyhlazení od pixelu 25 dále (část obr. 7)

Při použití vyhlazovacího filtru se v obrazu zvýrazňuje kontrast a potlačuje šum. Principiálně jde o zprůměrování hodnot sousedních pixelů. Rozdíly mezi sousedními hodnotami pixelů jsou s vyšším stupněm vyhlazení menší (signál v normálním obraze od 5000 do 10000, ve vyhlazeném obraze od 5500 do 8000, ve více vyhlazeném obraze pouze od 7000 do 7300). S vyšším stupněm ostření působí obraz více hladce, možná až nepřirozeně uměle.

Vyhlazením se zhoršuje prostorové rozlišení. Na obr. 5 vlevo nahoře je rozeznatelných 15 párů čar. Na obr. 5 vpravo nahoře je to již jen cca 11-12 párů čar. Na obr. 5 vlevo dole je to pouze 9 párů čar. Na obr. 5 vpravo dole už je viditelnost významně ovlivněna vyhlazením, rozeznat lze maximálně 7 párů čar. Horší prostorové rozlišení potvrzuje také obr. 7 a 8. Pro normální obraz rozeznáme maxima a minima až po páry čar v oblasti 34-40. pixelu (na ose X), zatímco pro obraz s 10. stupněm vyhlazení rozeznáme páry čar maximálně v oblasti 25.-30. pixelu.

Vyhlazovací filtry se v rtg diagnostice, zejména na CT, používají pro popis měkkých tkání, např. při popisu abdominálních (břišních) orgánů.

Použitím filtrů lze zvýraznit některé informace v obraze, některé lze potlačit. Tímto postprocessingem však není dodána do obrazu žádná další nebo nová informace. Jedná se pouze o „lepší“ zpracování informace v obraze již přítomné.

Pro simulaci filtrů byl využit software ImageJ.

Principy rekonstrukce CT obrazu

U rekonstrukce CT obrazu je základním úkolem zjistit hodnoty zeslabení v každém pixelu (neboli hodnoty každého pixelu matice), na základě nichž pak lze určit materiál v daném pixelu (voxelu). Využívá se několika typů rekonstrukcí, základní je rekonstrukce pomocí zpětné projekce, porkočilejší je pak iterativní rekonstrukce.

Nejprve si řekneme, jak probíhá rekonstrukce CT obrazu pomocí zpětné projekce. Nechť má původní matice 3×3 následující hodnoty jednotlivých pixelů:

Při rekonstrukce však jednotlivé hodnoty pixelů neznáme, cílem rekonstrukce je tyto hodnoty zjistit. Rekonstrukce vychází ze známých profilů zeslabení v různých projekcích. Nechť máme v naší zjednodušené situaci projekce BP1 (červená), BP2 (modrá) a BP3 (zelená), graficky znázorněné následovně (hodnoty pixelů matice jsou pouze šedivé, neboť je neznáme):

Profily zeslabení pro jednotlivé projekce jsou následující:

BP1: 

BP2:

BP3:

Hodnoty v jednotlivých projekcích budeme rozdělovat rovnoměrně do všech pixelů, kterými prochází „paprsek“ dané projekce. Celkem máme 3 projekce, proto hodnoty hned zpočátku vydělíme číslem 3. Začneme u projekce BP1, řádku 1:

Nejprve hodnotu 27 vydělíme 3, dostaneme 9. Tuto hodnotu rozdělíme rovnoměrně do všech tří pixelů (prvků) prvního řádku. Do každého pixelu tedy vložíme hodnotu 3. Stejně tak pro druhý řádek, hodnotu 18 vydělíme 3 (máme 3 projekce) a pak znovu 3 (hodnotu rozdělíme do 3 pixelů). Dostaneme 2. Tuto hodnotu vložíme do každého pixelu druhého řádku. Podobně pro třetí řádek matice: Hodnotu 9 vydělíme 3, tj. máme 3. Tuto hodnotu rozdělíme rovnoměrně do každého prvku třetího řádku, takže do každého prvku vložíme hodnotu 1. Námi získaná matice odvozená z BP1 vypadá následovně:

Pro BP2 vypadá odvozená matice následovně:

Pro BP3 vypadá odvozená matice následovně:

Nyní všechny tři odvozené matice sečteme. Dostáváme matici s následujícími hodnotami:

Toto je pak výsledná zrekonstruovaná matice, která předstauje CT obraz v daném řezu. Porovnáme-li hodnoty s hodnotami původní matice, zjistíme, že jsou mírně odlišné. Hodnoty jsou jakoby „vyhlazené, rozdíl mezi vysokými a nízkými hodnotami vedlejších pixelů je menší. Např. prostřední hodnota a hodnota nad ní: původně 0 a 9 (rozdíl 9), v nové matici 4 a 7 (rozdíl 3). Ve výsledném obrazu se tento efekt projeví rozmazáním (blurring) a šumem. Obraz lze zlepšit filtrací dat, ale o tom až jindy…

Nyní k iterativní rekonstrukci. Iterativní rekonstrukce vychází buď z již zrekonstruované matice použitím zpětné projekce, nebo zjednodušeně z nulové matice (výchozí matice může být v podstatě jakákoliv). Použijme jako počáteční nulovou matici:

Mimoto známe i profily zeslabení pro každou projekci, pro náš zjednodušený případ pro projekce BP1, BP2 a BP3:

Sečteme-li hodnoty v prvním řádku původní (nulové) matice, dostáváme součet 0. Potřebujeme dostat součet 27. Číslo 27 rozdělíme rovnoměrně do 3 pixelů, do každého přidáme hodnotu 9. Podobně pro druhý řádek, hodnotu 18 rozdělíme do 3 pixelů, tedy do každého 6. Podobně pro třetí řádek. Matice po dosazení hodnot z BP1 vypadá následovně:

Pro BP2 již bereme matici, která vznikla použitím BP1. Z projekce BP2 plyne, že součet pixelů v prvním sloupci je roven 27. Z matice odvozené v předešlém kroku použitím BP1 již máme součet v prvním sloupci roven 18. Rozdíl je roven 27-18=9. Takže hodnotu 9 rozdělíme rovnoměrně na tři hodnoty, které přičteme ke stávajícím hodnotám v matici. Tedy 9/3=3, proto do každého pixelu prvního sloupce přičtu 3.

Podle profilu zeslabení je součet v druhém sloupci roven 9. V matici odvozené z BP1 je součet v druhém sloupci roven 18. Rozdíl 9-18=-9. Tedy hodnoty -9 rozdělím rovnoměrně do všech tří pixelů druhého sloupce, ke každému pixelu přičtu hodnotu -3. Podobně pro třetí sloupec (rozdíl je roven 0, proto se pixely posledního sloupce nemění). Výsledná matice je následující:

Zbývá nám projekce BP3. Součet pro jednotlivé paprsky je roven 9, 9, 9, 18, 9, jak ukazuje následující grafické znázornění:

Stejným způsobem, jako pro BP1 a BP2 zkorigujeme hodnoty v jednotlivých paprscích BP3. Dostáváme:

Výsledná matice je rovna:

Tato matice odpovídá i původní matici, jejíž hodnoty pixelů jsme hledali. Zde je zřejmé, že iterativní rekonstrukci poskytuje lepší výsledek než zpětná projekce, ale pro její praktické použití je nutné mít dostatečnou výpočetní kapacitu. Kdybychom vycházeli místo nulové matice z matice, která nám vyšla při výpočtu zpětnou projekcí, byla by po prvním kole iterace výsledná matice následující:

Aplikujeme-li další kolo iterace, výsledná matice bude více a více podobná původní matici. Obecně je iterativní rekonstrukce výpočetně náročnější (jedná se o rekonstrukci matice 512×512 v několika řezech, nikoliv pouze 3×3 v jednom řezu) než rekonstrukce použitím zpětné projekce, což je i jejím největším limitujícím faktorem.

Nejnovější CT skenery

Na poli CT skenerů dochází k neustálému vývoji, který vede ke zlepšování CT skenerů, což přináší další výhody při CT vyšetření pacientů. Typicky se jedná o rychlejší sken a nižší dávku.

Obr. 1: Ukázka nových CT skenerů [1]

Souhrnně pro nejnovější CT skenery všech čtyř velkých výrobců – GE Revolution CT, Philips IQon Spectral CT, Siemens Somatom Force, Toshiba Aquilion ONE (Toshiba uvedla nedávno na trh nový skener Aquilion One Genesis) – platí následující informace:

  • Prostorové rozlišení v axiální rovině: 0,4 až 0,7 mm
  • Nominální tloušťka řezu: 0,5 až 1,5 mm
  • Parametry rentgenky (maximální): 120 kW, 150 kV, 1300 mA
  • Efektivní proud rentgenky: 10 až 1000 mAs
  • Doba rotace rentgenky okolo pacienta: 0,25 až 0,50 s
  • Počet simultánně nabíraných řezů: 16 až 320
  • Posun stolu na 1 rotaci rentgenky: 1 až 183 mm
  • Rychlost skenu: až 73 cm/s
  • Časové rozlišení: 50 až 250 cm

Těmito parametry se vyznačují CT skenery s nejnovějšími rentgenkami – GE Performix HDw, Philips iMRC, Siemens Vectron, Toshiba Megacool Vi.

Obr. 2: Ukázka nových CT rentgenek [1]

Na CT skenery jsoukladeny velké požadavky z hlediska mechanické stability, např. pri rotaci rentgenky okolo pacienta za 0,2 s působí na rotující části odtředivé zrychlení téměř 50 g. Design systému musí bý robustní, ale současně cenově a prostorově dostupný.

Současně i na samotné rentgenky jsou kladeny velké požadavky, což bylo již zřejmé ze souhrnných parametrů uvedených výše. Rentgenky by měly umožňovat skenování ve větším rozmezí napětí, přibližně od 70 do 150 kV, měly by produkovat vysoké proudy i při nižším napětí, měly by umožňovat dostatečné kontinuální zatížení a samozřejmě musí být schopny pracovat při velkém odtředivém zrychlení, až těch zmíněných 50 g.

Velkým posunem ku předu bylo zavedení rotačních rentgenek do praxe a jejich další vývoj. Jako první zavedla rotační rentgenku do praxe firma Siemens, jednalo se o Straton rentgenku. Později se z ní vyvinula ještě výkonnější rentgenka – Vectron rentgenka. Nevýhodou všech výše zmíněných rentgenek mimo Vectron rentgenku je relativně omezená produkce rtg fotonů při nižších napětích, typicky 100 kV a méně. Grafické znázornění výkonu rentgenek pro 120 kV je na obr. 3, pro 80 kV na obr. 4.

Obr. 3: Výkon CT rentgenek při napětí 120 kV [1]

Obr. 4: Výkon CT rentgenek při napětí 80 kV [1]

Z obr. 3 je zřejmé, že rentgenky se od sebe sice liší výkonem, který se pohybuje v rozmezí 82 až 120 kW, ale rozmezí výkonů je relativně úzké. Jiná situace je zřejmá z obr. 4, který ilustruje, jak významně se liší výkon rentgenek liší při nižším napětí (80 kV).

Právě omezený výkon rentgenky při nižším napětí limituje použití těchto nižších napětí u CT vyšetření menších pacientů a dětí, u vyšetření srdce a současně také u dual energy vyšetření. V těchto případech se pak může stát, že CT vyšetření při nižším napětí není dostatečně rychlé a v obraze se tak objeví pohybové artefakty. S použitím nižších napětí lze primárně snížit dávku záření pacientů (při nižším napětí je v obraze přítomno více kontrastu, vyšší šum je proto akceptovatelnější, což umožňuje snížit dávku pacientů).

Souhrn parametrů detektorů nových CT skenerů, resp. CT skenerů uvedených na trh v letech 2014-2016 (není zde Aquilion ONE Genesis uvedený na trh v roce 2017), je uveden v tabulce 1.

Tab. 1: Souhrn parametrů nových CT skenerů [1]

Použitá literatura
[1] Kachelriess M. Basics of X-ray based tomographic imaging for IGRT 1: Diagnostic CT and flat detector CT. German Cancer Research Center, Heidelberg, Germany.

CT detektory (2)

Detekční soustava CT skenerů je nejčastěji založena na scintilačních detektorech. Scintilační detektor je detektor, jehož základní částí je scintilační materiál, který převádí energii rtg fotonů na fotony viditelného světla. U CT se využívají anorganické scintilační materiály.

Požadavky na scintilační materiál detektoru CT skeneru jsou jedny z nejnáročnějších napříč celou rtg diagnostikou. Scintilační materiál musí mít dostatečnou světelnou výtěžnost, dostatečnou schopnost zeslabit (pohltit) rtg fotony, dostatečně krátkou dobu rozpadu scintilace (desítky mikrosekund), malý dosvit, odolnost proti záření (aby se materiál ozářením nezničil), dobrou časovou a teplotní stabilitu, spektrálně musí odpovídat fotodetektoru a samozřejmě musí být možné kompaktní provedení.

Z hlediska těchto vlastností se jako vhodné scintilátory zdají být keramické krystaly. Nabídka keramických krystalů je omezená, mezi nejčastěji používané scintilátory patří: CdWO4, Gd2O2S:Pr,Ce (GOS), Y2O3:Eu, Gd2O3:Eu a tzv. GE Gemstone materiál. Scintilátory pro víceřadé CT skenery jsou provedeny jako 2D detektory, s typickou velikostí detekčního elementu cca 1 mm. Soustava scintilátorů je obklopena odrazivým materiálem, jehož funkcí je jednak mechanická podpora scintilátoru, ale mimo to i udržení scintilace v daném scintilátoru, aby nedocházelo k tzv. cross-talku (jev, kdy je scintilace zaznamenána i v jiném detekčním elementu, než ke kterému náleží). Scintilátory i se svojí vyhodnocovací technikou musí splňovat také náročné požadavky na stabilitu, prostorové rozlišení a použitelnost při nízkých dávkách.

Jako scintilátory jsou v poslední době často zkoumány materiály obsahující granát (garnet), které jsou k dispozici jako monokrystaly, ale také polykrystaly. Tyto materiály splňují požadavky na scintilátor vhodné pro CT detektory – světelný výtěžek, krátkou dobu rozpadu scintilace a taktéž spektrálně odpovídají fotodetektoru. Jedním z prvních materiálů obsahujících granát je již zmíněný GE Gemstone materiál. Dalším materiálem je pak scintilátor s nízkým Z – ZnSe:Te, který se využívá pro dual energy zobrazení, které je firmou Philips technologicky řešeno tzv. sandwichovým uspořádáním detektorů. ZnSe:Te (o tloušťce 1 mm) se v tomto uspořádání využívá pro absorbci nízkoenergetických rtg fotonů. Za ním následuje GOS materiál (o tloušťce 2 mm), který je určen pro absorpci rtg fotonů vyšších energií.

Jiným technologickým řešením jsou pak tzv. photon-counting detektory. Základní rozdíl mezi těmito detektory a těmi ostatními je v tom, že photon-counting detektor „počítá“ jednotlivá kvanta energie, tj. jednotlivé rtg fotony s danou energií, zatímco ostatní detektory sumují energii všech rtg fotonů detekovaných jedním detekčním elementem dohromady. Grafické znázornění detekce běžným scintilačním detektorem, dual energy detektorem (sandwichové uspořádání) a photon-counting detektorem je uvedeno na obr. 1. Více v [1].


Obr. 1: Různé typy detektorů (Philips)

U photon-counting detektorů se však již nepoužívají scintilační materiály, je zde detektor s přímou konverzí signálu, nedochází tedy ke konverzi energie rtg fotonů na fotony viditelného světla.

Použitá literatura
[1] Shefer E, Altman A, Behling R, Goshen R, Gregorian L, Roterman Y, Uman I, Wainer N, Yagil Y, Zarchin O. State of the art of CT detectors and sources: A literature review. Curr Radiol Rep. 2013; 1: 76-91.

CT detektory (1)

Mezi komponenty zobrazovacího řetězce CT skeneru, které mají bezesporu největší dopad na kvalitu obrazu, patří zdroj záření, detekční systém a rekonstrukční algoritmus. V tomto a příštím článku se zaměříme na první dvě komponenty, zdroj a detekční systém.

V posledních dvaceti letech se vývoj CT detektorů řídil třemi hlavními trendy: zvyšováním počtu řezů, které souvisí s pokrytím většího skenovaného objemu, zvyšováním rychlosti skenu, která souvisí s větším výkonem zdroje a s kratšími dobami potřebnými k vyhodnocení signálu, a redukcí dávek, které velmi těsně souvisí s použitím iterativní rekonstrukce.

Jako CT detektory se v současnosti používají scintilační detektory, které mají detekční účinnost téměř 100%, zatímco dříve používané plynové detektory (xenonem plněné ionizační komory) měly účinnost pouze okolo 70%.

Scintilační detektory se skládají ze tří hlavních částí, dalo by se říct i vrstev. První vrstvou je scintilační materiál, který převádí energii detekovaných rtg fotonů na fotony viditelného světla. Další vrstvu tvoří fotodiody, na které dopadají vzniklé fotony viditelného světla, jejichž energie je převedena na elektrický signál. Třetí vrstvu představuje substrát pro přenesení elektrického signálu k elektronice k zesílení a dalšímu zpracování.

Matice detektorů se skládá z malých detekčních elementů. Rozpětí matice detektorů v axiální rovině pacienta je cca 1 m. Ukázka takové matice detektorů s tloušťkou 8 cm v podélné ose pacienta je na obr. 1. Na obr. 2 je ukázka scintilačního materiálu pro 64-řadý detektor. Scintilační materiál jednotlivých detekčních elementů je od sebe oddělen odrazivými vrstvami (septy) pro minimalizaci prostorového cross-talku (cross-talk je jev, kdy je světlo z jedné interakce zaznamenáno i v sousedních scintilačních elementech, nikoliv pouze v tom jednom, kde došlo k interakci, udává se v procentech celkového signálu). Na obr. 3 je pak ukázka matice diod, které jsou připevněny ke scintilačnímu materiálu.

Obr. 1: Matice CT detektorů (Philips) [1]

Obr. 2: Scintilační materiál CT detektoru (Philips) [1] – scintilační materiál (nažloutlá barva) jednotlivých detekčních elementů je oddělen odrazivými vrstvami (bílá barva) pro minimalizaci cross-talku

Obr. 3: Matice diod, která je připevněna na výstupní stranu scintilačního materiálu (Philips) [1]

Vlastnosti detektoru jsou klíčové pro získání CT obrazu dostatečné kvality. Zejména jde o dynamický rozsah (signál v detekčních elementech se může lišit až o 4 řády, CT detektory mají rozsah cca 5 řádů), rychlost odezvy, prostorové rozlišení, geometrickou detekční účinnost, kvantovou detekční účinnost a cross-talk (prostorový i časový, většinou několik procent), ale také o stabilitu (dlouhodobou i krátkodobou, kdy CT detektory musí produkovat stejnou odezvu na stejné ozáření) a homogenitu.

Geometrická detekční účinnost (geometric detection efficiency, GDE) je poměr mezi množstvím rtg fotonů dopadajících na aktivní oblast detektoru a celkovým množstvím dopadajících rtg fotonů. Závisí zejména na tzv. fill-faktoru (poměr mezi aktivní plochou detektoru a celkovou plochou detektoru, neaktivní plocha je plocha, kterou zaujímá elektronika). Typicky se pohybuje okolo 70%.

Kvantová detekční účinnost (detective quantum efficiency, DQE) je poměr mezi druhou mocninou SNR (signal to noise ratio) na výstupu detektoru SNRout a druhé mocniny SNR na vstupu detektoru SNRin. Většina zdrojů uvádí DQE pouze ve spojitosti se skiagrafií (radiografií), kdy výsledný obraz přímo souvisí s kvalitou detektoru. DQE klesá s klesající dávkou, protože se významně uplatňuje elektronický šum. Pro ideální detektor platí, že DQE=1.

Celková detekční účinnost (detection efficiency) detektoru je pak dána součinem geometrické a kvantové detekční účinnosti:

DE = GDE*DQE.

DQE však může být charakterizováno také jinak, a to pomocí noise power spektra, modulační přenosové funkce a signálu z plochy detektoru, jak bylo ukázáno v jednom z předešlých článků.

Použitá literatura
[1] Shefer E, Altman A, Behling R, Goshen R, Gregorian L, Roterman Y, Uman I, Wainer N, Yagil Y, Zarchin O. State of the art of CT detectors and sources: A literature review. Curr Radiol Rep. 2013; 1: 76-91.
[2] International Atomic Energy Agency. Diagnostic Radiology Physics: A Handbook for Teachers and Students. International Atomic Energy Agency, 2014.

Kvíz XII

Otázky:
Q1: Jaká je bitová hloubka pixelů detektoru, je-li možné zobrazit signál s rozlišením kontrastu 0,1%?
a) 2
b) 4
c) 8
d) 10

Q2: Všechny z následujících možností patří do elektromagnetického spektra s výjimkou jednoho. Kterého?
a) Gama záření
b) Rtg záření
c) Pozitronové záření
d) Mikrovlny

Q3: Mějmě hypotetický model atomu, který má vazebnou energii na slupce K 21 keV, na slupce L 14 keV a na slupce M 9 keV. Předpokládejme, že na slupce K vzniklo volné místo v elektronovém obalu. Jakou výslednou energii může mít vzniklé rtg záření?
a) Pouze 5 keV
b) Pouze 7 keV
c) 9 a 14 keV
d) 5, 7 a 12 keV

Q4: Rtg záření vzniklé rozptylem nebo brzděním nabitých částic se nazývá:
a) Čerenkovovo záření
b) Brzdné záření
c) Charakteristické záření
d) Elektrony Braggova píku

Q5: V rentgence se mění množství energie urychlených elektronů na rtg záření, ale také na teplo. Jaká část energie (v %) je vynaložena na vznik rtg fotonů?
a) 0
b) 1
c) 10
d) 50

Q6: Které tvrzení o spektrech uvedených na obrázku níže je pravdivé? Spektra převzatá z knihy Bushberg, et al.
a) Pouze spektrum uvedené vlevo je použitelné klinicky
b) Spektrum vlevo je použitelné pro ženy s menšími prsy (menší tloušťka komprimované tkáně), zatímco spektrum vpravo je použitelné pro ženy s většími prsy
c) Spektrum vlevo je použitelné pro ženy s většími prsy, zatímco spektrum vpravo je použitelné pro ženy s menšími prsy
d) Pouze spektrum uvedené vpravo je klinicky použitelné

Q7: Pro ideální zobrazovací řetězec by plocha pod křivkou v ROC (receiver operating characteristic) grafu měla mít plochu:
a) 0
b) 0,5
c) 1
d) 10

Q8: Teoreticky je vnitřní rozlišení (v lp/mm) rtg systému s flat panel detektorem se čtvercovým polem o velikosti 20 cm a matici 1024×1024 pixelů rovno:
a) 0,2 lp/mm
b) 1,3 lp/mm
c) 2,6 lp/mm
d) 4,2 lp/mm

Q9: Dynamický rozsah v digitální mamografii je typicky v rozsahu několika tisíc stupňů šedi. Jaká bitová hloubka tomu odpovídá?
a) 4
b) 8
c) 12
d) 16

Q10: Který z následujících parametrů nekvantifikuje radiační zátěž z CT vyšetření?
a) Pitch faktor
b) CTDI
c) DLP
d) Efektivní dávka

Q11: Heel efekt vzniká v důsledku absorpce v:
a) Anodě
b) Katodě
c) Krytu rentgenky
d) Žádná z možností

Q12: Za jakým účel se využívá rotační anoda v rentgence?
a) Využití malého ohniska k produkci vyšší hodnoty anodového proudu
b) Zvýšení maximální energie rtg svazku
c) Nižší tepelné zatížení anody
d) Redukce ceny rtg systému

Q13: Jaký je základní rozdíl mezi rentgenkou skiagrafického a multislice CT systému?
a) CT rentgenka pracuje při vyšším napětí
b) Skiagrafická rentgenka pracuje při vyšším napětí
c) CT rentgenka je mnohem menší, aby se vešla do gantry
d) CT rentgenka má mnohem větší tepelnou kapacitu

Q14: Charakteristické záření o energiích 20 a 23 keV je produkováno na terčíku ze kterého materiálu?
a) Wolfram
b) Rhodium
c) Molybden
d) Hliník

Q15: Současné zobrazovací rtg systémy využívají jakého generátoru napětí?
a) Jednofázový dvoupulzní
b) Třífázový šestipulzní
c) Třífázový dvanáctipulzní
d) Vysokofrekvenční

Q16: Rtg spektra, převzatá z knihy Bushberg, et al., na obrázku níže jsou produkována s odlišnými:
a) mA
b) kV
c) kV a materiálem terčíku
d) kV a filtrací

Q17: Jaký je maximální možný anodový proud generovaný rentgenkou při napětí 100 kV po dobu 0,1 s, je-li nominální zatížení anody 70 kW?
a) 7 mA
b) 70 mA
c) 700 mA
d) 7000 mA

Q18: Jaký je většinou transformační poměr u vysokonapěťových tranformátorů?
a) 50-100
b) 500-1000
c) 5000-10000
d) 50000-100000

Q19: Pro kterou z kombinací anody a terčíku bude mít rtg svazek generovaný při napětí 30 kV nejmenší polotloušťku?
a) Mo a Mo
b) Mo a Rh
c) Rh a Rh
d) W a Ag

Q20: Nevýhodou digitální mamografie ve srovnání s filmovou mamografií (myšlena kombinace film-fólie) je:
a) Horší kontrast
b) Nižší DQE (detective quantum efficiency, detekční kvantová účinnost)
c) Vyšší střední dávka v mléčné žláze
d) Horší prostorové rozlišení

Q21: Digitální tomosyntéza pro zobrazení prsní tkáně (někdy označovaná jako 3D mamografie) neumožňuje:
a) Rekonstrukci ohniskových rovin v kraniokaudálních i laterálních projekcích
b) Získání několika obrazů s dávkou odpovídající běžné mamografii
c) Získání obrazů ekvivalentních rekonstrukci z CT dat
d) Rekonstrukci syntetického 2D mamografického obrazu

Q22: Na níže uvedeném obrázku jsou rekonstruované CT obrazy. V čem se od sebe odlišují?
a) kV
b) mAs
c) Tloušťkou rekonstruovaného řezu
d) Rekonstrukčním kernelem

Q23: Artefakty na obrázku níže jsou způsobeny:

a) Pohybem pacienta
b) Podvzorkováním
c) Přítomností zubních výplní
d) Nesprávným nastavením detektoru

Q24: Při určitém CT vyšetření hlavy dospělého pacienta uvedl CT skener na konzoli hodnotu CTDI_vol 50 mGy a odhadovaná efektivní dávka je 2 mSv. Jak se změní hodnota CTDI_vol, použiji-li úplně stejné nastavení kV a mAs pro vyšetření břicha dospělého pacienta?
a) CTDI_vol i efektivní dávka se sníží
b) CTDI_vol se sníží a efektivní dávka se zvýší
c) CTDI_vol se zvýší a efektivní dávka se sníží
d) CTDI_vol i efektivní dávka se zvýší

Q25: Hodnota CTDI_vol uváděná CT skenerem je nevhodným parametrem pro odhad dávky pacienta, protože:
a) Pacient může mít odlišný průměr, než je průměr PMMA fantomu, pro který je hodnota CTDI_vol uvedená
b) Mohla být použita odlišná hodnota pitch faktoru
c) Mohla být použita odlišná hodnota mAs
c) Mohla být použita odlišná hodnota kV

Q26: Níže uvedený obrázek byl pořízen v průběhu provádění jednoho testu na rtg zařízení. K čemu tento test slouží?
a) Zjištění senzitivity a linearity
b) Zjištění kolmosti svazku a souhlasu radiačního a světelného pole
c) Zjištění velikosti detektoru
d) Zjištění rozlišení při nízkém kontrastu

Q27: Který z následujících parametrů nejméně ovlivňuje kvantový šum v CT obraze?
a) kV
b) Síla iterativní rekonstrukce
c) Velikost pacienta
d) Střed a šířka okna pro zobrazení stupňů šedi (WW, WL)

Q28: Která z následujících možností vede ke zvětšení CT obrazu zobrazeného na monitoru?
a) Zvětšení matice
b) Zvětšení FoV (field of view)
c) Zmenšení zobrazeného FoV
d) Zmenšení vzdálenosti mezi pacientem a detektorem

Q29: Zmenším-li FoV použitím primárních clon na angiografickém systému s flat panel detektorem (bez pixel binningu), jaký efekt to bude mít na prostorové rozlišení a dávku pacientovi?
a) Rozlišení se zlepší, dávka pacientovi vzroste
b) Rozlišení se zhorší, dávka pacientovi vzroste
c) Rozlišení zůstane stejné, dávka pacientovi klesne
d) Rozlišení se zlepší, dávka pacientovi klesne

Q30: Intervenční referenční bod, definovaný v České technické normě ČSN EN 60601-2-43, pro skiaskopické systémy s C-ramenem se nachází:
a) Na vstupu flat panel detektoru
b) V izocentru rotace C-ramene
c) Ve vzdálenosti 15 cm od izocentra rotace ve směru k rentgence
d) Ve vzdálenosti 15 cm od izocentra rotace ve směru k flat panel detektoru

Odpovědi:
A1: d) 10. Je-li systém schopen zobrazit rozlišení kontrastu 0,1%, musí mít dynamický rozsah minimálně 1000, tj. 2^10=1024. Pak rozlišení kontrastu 0,1% odpovídá rozdílu v signálu 1.
A2: c) Pozitronové záření.
A3: d) 5, 7 a 12 keV.
A4: b) Brzdné záření.
A5: b) 1.
A6: a) Pouze spektrum uvedené vlevo je použitelné klinicky. Spektrum vpravo je nevhodná kombinace anody a filtru, která vede k zeslabení píků charakteristického záření, což je nežádoucí.
A7: c) 1.
A8: c) 2,6 lp/mm. Velikost detekčního elementu je 20 cm/1024 = 200 mm/1024 = 0,195 mm. Rozlišení v lp/mm se stanoví jako 1/(2*velikost detekčního elementu) = 1/(2*0,195) = 2,6 lp/mm.
A9: c) 12. 2^12=4096, tedy několik tisíc.
A10: a) Pitch faktor.
A11: a) Anodě.
A12: a) Využití malého ohniska k produkci vyšší hodnoty anodového proudu. Teplo vznikající na anodovém terčíku je rozloženo do větší plochy, chlazení je efektivnější, je možné produkovat více rtg fotonů, tedy vyšší proud.
A13: d) CT rentgenka má mnohem větší tepelnou kapacitu.
A14: b) Rhodium.
A15: d) Vysokofrekvenční.
A16: b) kV.
A17: c) 700 mA.
A18: b) 500-1000.
A19: a) Mo a Mo. Tato kombinace propustí nejvíce rtg fotonů nižších energií (charakteristické fotony), ze všech uvedených kombinací.
A20: d) Horší prostorové rozlišení. U filmové mamografie bylo prostorové rozlišení vyšší než 11 lp/mm, zatímco u digitální mamografie je pro detekční element o velikosti 50-100 um prostorové rozlišení 5-10 lp/mm. U CR systémů je to okolo 10 lp/mm.
A21: c) Získání obrazů ekvivalentních rekonstrukci z CT dat. Obrazy z digitální tomosyntézy jsou koronální nebo sagitální, avšak axiální nikoliv.
A22: d) Rekonstrukčním kernelem.
A23: c) Přítomností zubních výplní
A24: b) CTDI_vol se sníží a efektivní dávka se zvýší. CTDI_vol pro břicho je uváděno pro PMMA fantom o průměru 32 cm, zatímco pro hlavu pro fantom o průměru 16 cm. Hodnoty mezi nimi jsou přibližně CTDI_vol(16 cm) = 2*CTDI_vol(32 cm). Tedy hodnota CTDI_vol se sníží. Efektivní dávka se zvýší, protože v oblasti břicha má člověk více radiosenzitivních orgánů (tlusté střevo, játra, žaludek…) než v oblasti hlavy, stejné množství záření „způsobí“ vyšší efektivní dávku.
A25: a) Pacient může mít odlišný průměr, než je průměr PMMA fantomu, pro který je hodnota CTDI_vol uvedená. Hodnota CTDI_vol se vztahuje k fantomu o průměru 16 cm nebo 32 cm, pro odhad dávky pacientovi z CT je potřeba korigovat hodnotu CTDI_vol na aktuální průměr pacienta v dané oblasti, tj. je potřeba získat hodnotu SSDE.
A26: b) Zjištění kolmosti svazku a souhlasu radiačního a světelného pole.
A27: d) Střed a šířka okna pro zobrazení stupňů šedi (WW, WL).
A28: c) Zmenšení zobrazeného FoV. Zmenšením FoV se mi stávající FoV „roztáhne“ přes celý monitor, čímž se mi zvětší CT obraz.
A29: c) Rozlišení zůstane stejné, dávka pacientovi klesne. Prostorové rozlišení se změnou FoV (velikosti pole) nemění. Měnilo by se, kdyby se jednalo o zoom (zvětšení). Dávka pacientovi klesne, protože se méně tkání nachází v primárním rtg svazku. Nicméně v praxi se stává, že dávka na detektor je mírně zvýšena, protože zvětšením daného FoV na celý monitor vzroste subjektivně vnímaný šum. Mírné zvýšení dávky vede k tomu, že i zvětšený obraz se subjektivně jeví jako stejně zašuměný jako při větším FoV.
A30: c) Ve vzdálenosti 15 cm od izocentra rotace ve směru k rentgence.

Použitá literatura:
Radiological Physics 2016. Raphex diagnostic examination. 2013-2016. Radiological and Medical Physics Society of New York.

Rentgenové vyšetření v těhotenství

Často mi od vás, čtenářů, především pak čtenářek, chodí dotazy ohledně ozáření v těhotenství. Ve velké většině případů se jedná o zbytečný strach, ale proberme si to postupně.

Jde-li žena-pacientka na rentgenové (rtg) vyšetření, často se v čekárně setká s upozorněním, že má oznámit personálu, je-li těhotná nebo mohla by být těhotná. Už tady ta situace vzbuzuje v ženách strach, že ono rtg záření je skutečně nebezpečné. V některých případech dokonce vzbuzuje v pacientkách jednání, jako kdyby rtg obecně bylo téměř toxické, tj. jsem v blízkosti rtg vyšetřovny a jsem těhotná, plod určitě bude poškozený. Ale je to špatná domněnka. Rtg vyšetřovna není nebezpečná, rtg záření tam vzniká pouze tehdy, je-li v daném okamžiku provedena expozice neboli ono rtg vyšetření. Ani před ním, ani po něm nehrozí žádné nebezpečí vám, ani vašemu nenarozenému miminku, a to ani přímo na rtg vyšetřovně, už vůbec ne v jejím okolí.

Přejděme dále. Samotná těhotná pacientka má podstoupit rtg vyšetření. Oznámila personálu, že je těhotná. Jedná-li se o rtg vyšetření mimo oblast břicha a pánve, je možné rtg vyšetření provést bez jakýchkoliv obav. Např. rtg vyšetření kotníku, kolene, ramene, plic, zubů… Plod v těchto případech obdrží nulovou dávku, proto mu z těchto rtg vyšetření nehrozí jakékoliv nebezpečí. Použití ochranné zástěry má víceméně psychologický efekt, takže není potřeba ji striktně vyžadovat.

Jedná-li se o rtg vyšetření v oblasti břicha a pánve, je potřeba, aby lékař-radiolog na daném pracovišti posoudil, je-li vyšetření skutečně nutné. Jde-li odložit, pak se to doporučuje. Nejde-li to, např. z porodnických nebo ortopedických indikací, pak se provede. Dávka na plod z rtg vyšetření břicha a pánve se pohybuje v dávkách do 10 mGy. Prahová dávka pro vznik poškození je však až 100 mGy (je to přibližně stanovená hranice, neplatí, že je to hranice striktně oddělující bezpečné dávky od nebezpečných), tj. dávky jsou hluboko pod touto hranicí. Takže i takové rtg vyšetření je pro nenarozené miminko bezpečné, pacientky se nemusí obávat.

Nyní se posuneme k vyšetření, které využívá taktéž rtg záření, ale ve větší míře, a to CT vyšetření. Zde opět platí, že jedná-li se o CT vyšetření mimo oblast břicha a pánve, pak je možné ho provést bez jakýchkoliv obav. Plod už zde dostane malinkou dávku z rozptýleného záření z těla pacientky, ale ve většině případů se jedná o dávky na plod menší než 0,01 mGy. To platí i pro CT mozku, např. z důvodu cévní mozkové příhody nebo traumatu. Mírně vyšší dávky na plod, dávky do 1 mGy se mohou vyskytnout při CT vyšetření hrudníku (ale vzpomeňme si, že prahová hodnota pro vznik poškození je 100 mGy). V případě CT vyšetření z důvodu polytraumatu, např. automobilové nehody, je dávka na plod při vyšetření od mozku až po stehenní kosti v rozmezí 10-30 mGy, tj. opět hluboko pod hranicí 100 mGy.

Jedná-li se o cílené CT vyšetření břicha a/nebo pánve, zde je situace obtížnější a závisí na období vývoje plodu a současně na provedení konkrétního CT vyšetření. Z hlediska vývoje plodu platí, že jedná-li se o 0.-2. týden po početí, platí pravidlo „všechno nebo nic“, tj. buď dojde k samovolnému potratu nebo se plod vyvíjí úplně normálně bez jakýchkoliv poškození. V této fázi vývoje není zdůvodněné umělé přerušení těhotenství, tělo si s touto situací poradí samo.

Bylo-li CT vyšetření v oblasti břicha a/nebo pánve provedeno v období od 3. týdne od početí, je nutné odhadnout dávku na plod pro dané CT vyšetření a anatomické poměry pacientky. V této fázi je nutná spolupráce pracoviště, na kterém provedli CT vyšetření, a radiologického fyzika, který odhadne dávku na plod na základě všech parametrů vyšetření a pacientky. Je-li odhadnutá dávka na plod menší než 100 mGy, situaci není potřeba dále řešit, opět to není důvod k umělému ukončení těhotenství. Je-li dávka na plod vyšší než 100 mGy, což se může stát např. pro komplikovaná CT vyšetření, pak je nutné uvážit další okolnosti (jedná-li se o dlouho očekávané těhotenství, náboženské důvody), doporučuje se konzultace s genetickou poradnou. Ještě podotýkám, že hranice 100 mGy není striktní, je to pouze přibližná hranice, od které je potřeba začít se daným případem zabývat.

Publikované studie dokazují poškození plodu až od podstatně vyšších dávek, řádově okolo 500-1000 mGy. Takže ani překročení dávky 100 mGy na plod neznamená, že se poškození plodu určitě vyskytne. Pravděpodobnost vzniku poškození je sice vyšší než u dávek pod 100 mGy, ale existují případy, kdy ani dávka na plod 400 mGy nezpůsobila vůbec žádné poškození plodu a dítě se narodilo zdravé.

Bez ohledu na velikost dávky na plod při rtg vyšetření v těhotenství je potřeba si uvědomit, že bohužel existuje i výskyt spontánně vzniklých poškození, tedy bez ohledu na rtg ozáření. Např. pravděpodobnost spontánního potratu je větší než 15 %, výskyt genetických abnormalit 4-10 %, poruchy růstu se vyskytují u cca 4 % jedinců.

Závěrem lze říct, že rtg vyšetření se stala pro těhotné pacientky velkým strašákem, ale často zbytečným. Právě stres způsobený tím, že se pacientka užírá myšlenkami, jestli se něco nestalo nenarozenému dítěti při rtg vyšetření, je v mnoha případech větším nebezpečím než samotné rtg vyšetření. Trápí-li vás taková situace, zeptejte se na daném pracovišti, měli by vám poskytnout relevantní informace, abyste se nemusela zbytečně obávat.

Použitá literatura
International Commission on Radiological Protection. Pregnancy and medical radiation. Ann ICRP 2000;30(1):1–43
Súkupová L., Vachata P. Riziko poškození plodu v důsledku rentgenových výkonů u gravidních žen.Česká a slovenská neurologie a neurochirurgie 2017; 80(113): 276-279

Použití ionizační komory (2)

Při použití ionizační komory pro měření ve fotonových svazcích musí být splněno několik předpokladů, které nám zaručí, že dávka odvozená z odezvy ionizační komory odpovídá v dávce daném médiu. Nejdůležitějším předpokladem je rovnováha nabitých částic, v případě rtg diagnostiky modifikovaná na elektronovou rovnováhu.

Rovnováha nabitých částic říká, že množství a energie částic do objemu vstupujících je shodná s množstvím a energií částic z objemu vystupujících. Grafické znázornění je uvedeno na obr. 1.

Obr. 1: Znázornění rovnováhy nabitých částic [1]

Pro jednoduchost předpokládejme, že se všechny nabité částice, pro nás tedy elektrony, pohybují stejným směrem a mají stejnou energii, což je znázorněno v horní části obr. 1.  Nyní si popíšeme, co se děje s elektrony v malém objemu dV, když tento objem umisťujeme ve směru svazku hlouběji do ozařovaného objemu.

Blízko povrchu ozařovaného objemu je počet elektronů (celková ionizace) v objemu dV malý, s rostoucí hloubkou narůstá počet elektronů, které jsou uvolňovány interagujícími fotony. Množství těchto elektronů je znázorněno v dolní části obr. 1 v jednotlivých obdélníčcích. V určité hloubce od povrchu dosáhne počet elektronů (celková ionizace) maxima, graficky znázorněno na obr. 2, poté se jejich počet, stejně tak celková ionizace, snižuje, tak jak se zeslabuje svazek fotonů v materiálu. Hloubka, ve které je ionizace maximální, je mezní hloubkou, od které dále do hloubky se předpokládá, že je splněna rovnováha nabitých částic, pro nás elektronová rovnováha. Hloubka maximální ionizace odpovídá dosahu nabitých částic, pro nás elektronů vzniklých v důsledku interakcí rtg fotonů v ozařovaném objemu, v daném materiálu.

Obr. 2: Celková ionizace v závislosti na hloubce [1]

Případ znázorněný na obr. 2 předpokládá, že ionizace na povrchu je nulová, což je taktéž zjednodušení, které není reálné. Ve skutečnosti je běžné, že na povrchu materiálu se vyskytuje množství nabitých částic (elektronů), které se tam dostávají rozptylem.

Maximální ionizace je dosaženo v určité hloubce, která závisí na energii interagujících fotonů, a tedy energii vzniklých elektronů. Pro energie využívané v rtg diagnostice je hloubka maximální ionizace velmi malá, tj. maximální ionizace je dosaženo velmi blízko povrchu (hloubka odpovídající dosahu elektronů v daném materiálu, jak bylo uvedeno výše). Hodnoty hloubky, ve které je dosaženo maximální ionizace, jsou pro velké rozpětí energií uvedeny v tab. 1 pro vodu (vlastnostmi blízká měkkým tkáním) a kompaktní kost.

Tab. 1: Dosah elektronů různých energií ve vodě a v kompaktní kosti [1]

Vezmeme-li z tab. 1 pouze energie relevantní pro rtg diagnostiku, je dosah elektronů ve vodě do 1 mm, proto je i maximální ionizace dosaženo v hloubce pod 1 mm. Zatímco pro energii např. 1 MeV je to v řádu jednotek cm. Oblast mezi povrchem a dosažením maximální ionizace se označuje jako build-up oblast. Build-up efekt umožňuje v radioterapii šetřit kůži pacientů. V rtg diagnostice je build-up efekt zanedbatelný, proto je nejvíce ozařovaným orgánem v rtg diagnostice právě kůže pacienta.

Neméně důležitým předpokladem pro dosažení rovnováhy nabitých částic je homogenní složení ozařované oblasti a dále pak i homogenní rtg svazek.

Použitá literatura
[1] Dance DR, Christofides S, Maidment ADA, McLean ID, Ng KH. Diagnostic radiology physics: A handbook for teachers and students. International Atomic Energy Agency, 2014

Použití ionizační komory (1)

Za běžných podmínek se plyny chovají jako výborné izolanty, ale působením ionizujícího záření se jejich chování mění. Elektricky neutrální atomy molekuly se působením ionizujícího záření štěpí na kladné ionty a elektrony. V důsledku toho již plyn není izolant, ale stane se vodivým. Toho se využívá u plynových detektorů, mezi které se řadí i ionizační komory. Dále se do plynových detektorů řadí proporcionální detektory a Geiger-Müllerovy detektory. Všechny tyto detektory se od sebe odlišují velikostí a rozložením intenzity elektrického pole, které jsou určeny geometrií detektoru, napětím a druhem a tlakem pracovního plynu. Ukázka pracovních režimů jednotlivých typů plynových detektorů je zobrazena na obr. 1.

Obr. 1: Pracovní oblasti různých typů plynových detektorů (sebraný náboj na elektrodách v závislosti na intenzitě elektrického pole, tedy elektrickém potenciálu mezi elektrodami)

První oblast na obr. 1 („region not used“) je oblast, kdy není intenzita elektrického pole dostatečná, produkty ionizace nejsou dostatečně rychle odděleny od sebe, dochází k jejich rekombinaci. Tato oblast se označuje jako oblast rekombinační nebo oblast Ohmova zákona. Pro práci plynových detektorů se nevyužívá.

S rostoucí intenzitou elektrického pole roste i driftová rychlost vytvořených iontů a elektronů, klesá pravděpodobnost rekombinace. Od určité hodnoty napětí je velikost sebraného náboje nezávislá na intenzitě elektrického pole, protože jsou již všechny vzniklé elektrony a ionty sebrány. Tato oblast se označuje jako oblast nasyceného proudu. V této oblasti pracují ionizační komory (na obr. 1 je tato oblast označená „ion chamber region“).

Za oblastí práce ionizačních komor je oblast proporcionality (na obr. 1 označená „proportional counting region“), ve které pracují proporcionální detektory. Počet sebraných iontů a elektronů je vyšší než počet vytvořených, což je dáno plynovým zesílením detektoru. Poté následuje oblast omezené proporcionality, pro plynové detektory se běžně nepoužívá.

Se zvyšující se hodnotou intenzity elektrického pole se dostáváme do oblasti Geiger-Müllerovy (na obr. 1 označena „Geiger region“), ve které pracují Geiger-Müllerovy detektory.

Ionizační komory i proporcionální detektory umožňují měření energie částic, proto se označují jako spektrometrické detektory, zatímco Geiger-Müllerovy detektory to neumožňují, jedná se pouze o čítače částic.

Vyhodnocení odezvy ionizační komory lze provést dvěma způsoby. V radiodiagnostice se využívá vyhodnocení proudové (integrální), při kterém se měří proud odpovídající ionizací vytvořenému náboji za jednotku času. Vyhodnocení impulzní je určeno pro spektrometrické měření, ale nelze ho použít pro takové fluence, jaké se využívají v rtg diagnostice.

Celkový náboj elektronů nebo iontů stejného znaménka je výsledný signál, který je vynásobením energií potřebnou na vznik jednoho iontového páru ve vzduchu vzhledem k hmotnosti vzduchu převeden na kermu ve vzduchu. Energie potřebná pro vytvoření jednoho iontového páru ve vzduchu je rovna 33,97 eV.

Jak je již zřejmé z výše uvedeného, ionizační komory jsou plněny vzduchem a používají se k měření kermy ve vzduchu nebo dávky. Ionizační komory mohou mít různý tvar, nejčastěji se v rtg diagnostice používají cylindrické (tvar válečku, patří sem i tužkové ionizační komory) a planparalelní (tvar disku).

U planparalelní ionizační komory jsou elektrody planparalelně uspořádané vzhledem ke vstupnímu okénku (povrchu) komory. U cylindrických komor je v geometrickém středu jedna elektroda (drátek), vnější obal pak představuje druhou elektrodu. Elektroda uprostřed je anoda, plášť komory je katoda.

Vzduch v dutině ionizačních komor používaných v radiodiagnostice komunikuje s vnějším prostorem okolo, proto je potřeba korigovat odezvu ionizační komory na teplotu, tlak a vlhkost okolí. Teplota a tlak ovlivňují odezvu komory významně, vlhkost zanedbatelně.

Ionizační komory, které nekomunikují s prostorem okolo (jsou vzduchotěsné), nejsou vhodné pro měření v rtg diagnostice, protože tloušťka stěn komory nezbytná k udržení vzduchotěsnosti vykazuje velkou energetickou závislost.

Použitá literatura
[1] https://en.wikipedia.org/wiki/Ionization_chamber#/media/File:Detector_regions.gif
[2] Gerndt J. Detektory ionizujícího záření. České vysoké učení technické, Fakulta jaderná a fyzikálně inženýrská, 1994
[3] Dance DR, Christofides S, Maidment ADA, McLean ID, Ng KH. Diagnostic radiology physics: A handbook for teachers and students. International Atomic Energy Agency, 2014

Kerma vs. dávka v rtg diagnostice

Mějme objem určité látky V o hmotnosti m, se kterou interagují nenabité částice, pro rtg diagnostiku typicky rtg fotony. Část energie rtg fotonů ɛ_tr je vynaložena při různých interakcích na vznik sekundárních částic. Tato energie ɛ_tr je dána jako suma všech počátečních kinetických energií nabitých částic uvolněných nenabitými v daném objemu V. Nenabitými částicemi jsou pro energie v rtg diagnostice rtg fotony, nabitými částicemi elektrony, které vznikají např. při fotoefektu nebo při nekoherentním rozptylu (Comptonův rozptyl). Proto vynaložená energie ɛ_tr odpovídá sumě počátečních kinetických energií elektronů v okamžiku jejich vzniku.

Jakmile reagují nabité částice (elektrony) s látkou, část jejich kinetické energie může být vyzářena ve formě brzdného záření. Avšak v rozsahu energií v rtg diagnostice je tato interakce velmi nepravděpodobná, tedy zanedbatelná.

Nyní máme energii ɛ_tr vynaloženou na vznik sekundárních částic v látce o objemu V a hmotnosti m. Nechť je R_in energie záření, která do objemu V vstupuje, a R_out energie, která z objemu V vystupuje. Pak sdělená energii ɛ danému objemu látky V je rovna rozdílu energií R_in a R_out, ɛ = R_in-R_out.

Na základě výše definovaných veličin již můžeme definovat kermu (akronym Kinetic Energy Released per unit MAss): K = dɛ_tr/dm neboli kerma je rovna podílu součtu počátečních kinetických energií všech nabitých částic uvolněných nenabitými v malém objemu látky dV o hmotnosti dm. Jednotkou je J/kg a nazývá se Gray, značka Gy.

Pro kermu platí, že může být definována v jakémkoli materiálu, proto je nutné uvést, ke kterému materiálu se kerma vztahuje. Kerma je definována pouze pro nenabité (nepřímo ionizující) částice, tj. fotony a neutrony. Kerma popisuje první krok při interakci nenabitých částic s látkou – předání energie z nenabitých částic na nabité částice. Neméně důležitý předpoklad pro definici kermy je ten, že energie sekundárně vzniklých částic (elektronů v rtg diagnostice) nemusí zůstat v malém objemu dV, ve kterém částice vznikly, kerma pracuje pouze s počáteční kinetickou energií těchto vzniklých částic. Kinetická energie elektronů je pak využita na excitaci a ionizaci atomů látky, ve které elektrony interagují.

Absorbovaná dávka je rovna podílu sdělené energie  dodané látce o hmotnosti dm a této hmotnosti dm. D = dɛ/dm. Jednotkou je opět Gray (J/kg), značka Gy. Absorbovaná dávka popisuje druhý krok interakce nenabitých částic s látkou, jde o popis depozice energie nabitých částic v látce.

Jak je vidět již z definic obou veličin, jsou mezi nimi rozdíly. Jedním z rozdílů je objem látky, ke kterému se veličiny vztahují. Kerma pracuje s objemem, ve kterém došlo ke vzniku částic, tedy objemem, kde byla předána energie z nenabitých částic nabitým. Dávka pracuje s objemem, ve kterém se deponovala kinetická energie těch vzniklých nabitých částic.

Největší rozdíl mezi veličinami je však na rozhraní dvou materiálů, kde jsou rozdílné hustoty ionizace a rozdílný rozptyl. Na rozhraní dvou materiálů je změna v hodnotě kermy skoková, je daná podílem hmotnostních součinitelů přenosu energie obou materiálů, zatímco dávka se mění postupně až do hloubky, která odpovídá dosahu sekundárních částic (elektronů v rtg diagnostice).

Podíl hmotnostních součinitelů přenosu energie na rozhraní kosti a měkké tkáně je graficky znázorněn na obr. 1.

Obr. 1: Podíl hmotnostních součinitelů přenosu energie na rozhraní kosti a měkké tkáně pro různé energie [1]

Z obr. 1 je zřejmé, že změny kermy pro rtg fotony v rozsahu energií používaných v rtg diagnostice jsou na rozhraní kosti a měkké tkáně velmi významné. Současně však také v závislosti na dosahu sekundárních elektronů (konkrétní hodnoty dosahu sekundárních elektronů jsou uvedeny v tab. 1) vznikajících v důsledku interakcí rtg fotonů lze říct, že absorbovaná dávka je tím ovlivněna pouze do velmi malé hloubky (odpovídající dosahu sekundárních elektronů), do hloubky menší než cca 1 mm.

Tab. 1: Dosahy sekundárních elektronů ve vodě a v kosti [1]

Obecně zjednodušeno platí, že pro energie fotonů používaných v rtg diagnostice se předpokládá, že v materiálech s nízkým Z (měkké tkáně i kosti) jsou si kerma a dávka rovny (od určité hloubky v ozařovaném objemu, kdy je dosaženo elektronové rovnováhy, tato hloubka odpovídá dosahu sekundárních elektronů, tj. od hloubky větší než cca 1 mm, tedy prakticky skoro vždy; podíl energie vynaložené na vznik brzdného záření je zanedbatelný, k této interakci při rtg energiích nedochází). U vyšších energií to však předpokládat nelze.

Použitá literatura
[1] Dance DR, Christofides S, Maidment ADA, McLean ID, Ng KH. Diagnostic radiology physics: A handbook for teachers and students. International Atomic Energy Agency, 2014

Jakým způsobem ovlivňuje napětí rtg svazku dávku pacientovi?

Proč u skiagrafie klesá dávka pacientovi s rostoucí hodnotou napětí (ale jenom někdy), ale u CT tomu tak není, resp. je to přesně naopak?
—————————————————————————————–

Nejprve ke skiagrafii:
Budu-li mít skiagrafický rtg systém bez expoziční automatiky, tak tam platí, že s rostoucím napětím roste dávka pacientovi, protože s rostoucím napětím roste nejen pronikavost, ale i množství vyprodukovaných fotonů (celkově fluence energie). Tedy nezměním-li hodnotu mAs, ale pouze zvednu hodnotu napětí, vzroste s vyšší hodnotou napětí i dávka pacientovi, protože se vyprodukuje více rtg fotonů, navíc i vyšší energie, vzroste i dávka na receptoru obrazu. Platí zde tzv. „pravidlo 15%“ neboli zvednu-li napětí o 15%, bude fluence energie rtg fotonů o 50% vyšší. V praxi to pak znamená, že s nárůstem napětí o 15% je potřeba snížit hodnotu mAs o 50%, abych dostala stejnou energii na receptoru obrazu.

Ačkoliv je fluence energie úměrná druhé mocnině napětí, v praxi je to více než jen druhá mocnina. Při nižším napětí jsou ve spektru zastoupeny více nízkoenergetické fotony, které jsou pohlceny základní filtrací (kryt rentgenky, chladící olej), zatímco při vyšším napětí nejsou odfiltrovány v takové míře. Takže fluence energie roste s vyšším napětím rychleji než jen s druhou mocninou, někdy se uvádí, že je to téměř třetí mocnina.

Situace je ale jiná v případě skiagrafického rtg systému s expoziční automatikou. Expoziční automatika funguje tak, že jakmile na ni dopadne dostatečná energie záření, tak expozici ukončí. Nechť je při rtg vyšetření na takovém rtg systému použito určité napětí a určitá hodnota mAs. Zvednu-li napětí o 15%, tak se mi automaticky sníží hodnota mAs přibližně o 50%. Tím dostanu na expoziční automatice stejnou fluenci energie. Ale dávka pacientovi se zmenší, protože mnohem více záření pacientem proletí a dopadne na receptor obrazu než v případě nižší hodnoty napětí, kdy se více rtg fotonů pohltí v pacientovi.

Nevýhodou vyšší hodnoty napětí je ztráta kontrastu v důsledku většího množství rozptýleného záření, což může u některých expozic vyžadovat zvýšení hodnoty proudu (množství rtg fotonů).

Nyní k CT:
Nechť mám CT skener s automatickou modulací proudu a napětí. Provedu vyšetření při 120 kV a dávka pacientovi, resp. hodnota CTDI nebo DLP, dosáhne určité hodnoty. Snížím-li hodnotu napětí na 80 kV, sníží se i dávka pacientovi, resp. CTDI nebo DLP. Důvodem je rozdílný způsob optimalizace, CT optimalizuje obraz na poměr kontrast vs. šum, na rozdíl od skiagrafických rtg systémů, které optimalizují na fluenci energie dopadající na receptor obrazu (v případě systémů s expoziční automatikou). CT skener se vždy snaží o získání konstantní hodnoty kontrast/šum, je-li kontrast vyšší, pak je akceptovatelný i vyšší šum a naopak.

Při nižší hodnotě napětí na CT mi vzroste zastoupení fotoefektu, tj. získávám podstatně lepší kontrast v obraze. S lepším kontrastem si můžu dovolit vyšší šum, který tam dozajista je, protože mám méně rtg fotonů a taktéž jsou nižší energie, tj. menší pronikavosti. Přesto dosáhnu požadované hodnoty kontrast/šum. Takže pak platí, že s nižší hodnotou napětí klesá dávka pacientovi, i když celkově je výsledný obraz podstatně více zašuměný než v případě vyšší hodnoty napětí.

Proto u CT platí, že s nižší hodnotou napětí klesá dávka pacientovi, ale podstatně narůstá šum v obraze, o kterém se většinou nemluví.

S napětím 140 kV dochází k velké ztrátě kontrastu, proto musím požadovaný poměr kontrast/šum „nahnat“ tím, že snížím významně šum, čehož dosáhnu vyšším počtem vyprodukovaných rtg fotonů, čemuž odpovídá vyšší dávka pacientovi. Takže s vyšším napětím narůstá dávka pacientovi.

Závěr:
Použiji-li skiagrafický rtg systém bez expoziční automatiky, pak platí, že s rostoucí hodnotou kV (bez změny hodnoty mAs) roste dávka pacientovi.

Použiji-li skiagrafický rtg systém s expoziční automatikou, pak platí, že s rostoucí hodnotou kV mi klesá dávka pacientovi, protože automatika mi sama sníží hodnotu mAs na potřebnou hodnotu.

U CT platí, že s nižší hodnotu kV je menší i dávka pacientovi, ale obraz je více zašuměný.

Kvíz XI

Otázky:
Q1: Absorbovaná dávka je energie absorbovaná na jednotku:
a) Hustoty
b) Hmotnosti
c) Objemu
d) Plochy

Q2: Jednotkou ekvivalentní dávky je:
a) C/kg
b) Gy
c) Sv
d) Je bezrozměrná

Q3: Radiační váhový faktor pro rentgenové záření nabývá hodnoty:
a) 1
b) 2
c) 10
d) 20

Q4: Je-li dávka na kůži při rtg výkonu 10 mGy, čemu je rovna ekvivalentní dávka na kůži?
a) 0,1 mSv
b) 1,0 mSv
c) 10 mSv
d) 100 mSv

Q5: Vstupní povrchová kerma K_e je nejméně ovlivněna následujícím parametrem rtg svazku:
a) Napětím
b) Proudem
c) Expozičním časem
d) Plochou rtg svazku

Q6: Která z následujících možností je nejvhodnější pro měření vstupní povrchové kermy?
a) Ionizační komora
b) Geiger-Müllerův počítač
c) NaI krystal
d) Fotonásobič

Q7:  Jaký je nejvyšší povolený dávkový (správně kermový) příkon při skiaskopii, měřený ve vzdálenosti 30 cm před detektorem?
a) 1 mGy/min
b) 87 mGy/min
c) 200 mGy/min
d) Není omezený

Q8: Při skiaskopii platí, že po určitém čase skiaskopie se musí ozvat zvuková výstraha. Jak dlouhý je tento časový interval?
a) 1 min
b) 5 min
c) 15 min
d) Není daný

Q9: Při intervenčních výkonech platí, že po určitém počtu pořízených akvizičních (cine) scén se musí ozvat zvuková výstraha. Jaký je to počet scén?
a) 5
b) 10
c) 50
d) Není daný

Q10: Jaká je jednotka veličiny součin kermy a plochy P_KA (KAP)?
a) Gy/cm2
b) Gy*cm2
c) Gy*cm
d) Gy2/cm

Q11: Faktor zpětného rozptylu (backscatter factor) v radiodiagnostice závisí na konkrétním rtg svazku (napětí, filtrace) a na velikosti pole. Jaká je jeho přibližná hodnota (mimo mamografii)?
a) 0,7
b) 1,1
c) 1,4
d) 1,7

Q12: Faktor zpětného rozptylu (backscatter factor) v radiodiagnostice závisí na konkrétním rtg svazku (napětí, filtrace) a na velikosti pole. Jaká je jeho přibližná hodnota v mamografii?
a) 0,7
b) 1,1
c) 1,4
d) 1,7

Q13: Mějme mamografický rtg systém s funkční expoziční automatikou. Zvýšení kterého z následujících parametrů vede k největší redukci střední dávky v mléčné žláze?
a) Proud
b) Expoziční čas
c) Napětí
d) Velikost ohniska

Q14: Fantom simulující hlavu dospělého člověka pro měření CTDI je válec vyrobený z PMMA (plexiskla), jehož průměr je:
a) 10 cm
b) 16 cm
c) 24 cm
d) 32 cm

Q15: V jakém vztahu jsou veličiny CTDI_w a CTDI_vol, resp. čemu se rovná poměr CTDI_vol/CTDI_w?
a) 1
b) Pitch faktoru
c) 1/pitch faktor
d) Doba rotace rentgenky

Q16: Jaký je přibližný vztah mezi CTDI_vol pro PMMA fantom o průměru 16 cm a 32 cm při stejném množství použitého rtg záření?
a) CTDI_vol(16 cm) = 2x CTDI_vol(32 cm)
b) CTDI_vol(32 cm) = 2x CTDI_vol(16 cm)
c) CTDI_vol(16 cm) = 5x CTDI_vol(32 cm)
d) CTDI_vol(32 cm) = 5x CTDI_vol(16 cm)

Q17: V jakém případě jsou si CTDI_vol a CTDI_w rovny?
a) Nikdy
b) Pro pitch faktor = 0,5
c) Pro pitch faktor = 1,0
d) Pro pitch faktor = 2,0

Q18: Jaká je jednotka veličiny CTDI?
a) mGy
b) mGy*cm
c) mGy/cm
d) mGy*cm

Q19: Jaká je jednotka veličiny součin kermy a délky P_KL?
a) mGy
b) mGy*cm
c) mGy/cm
d) mGy*cm

Q20: Při intervenčních výkonech by měl lékař provádějící výkon pod rtg kontrolou používat ochranná stínění. Jaký by měl být minimální stínící ekvivalent stropního závěsného stínění?
a) 2,00 mm Pb
b) 1,00 mm Pb
c) 0,50 mm Pb
d) 0,30 mm Pb

Q21: Z jakého důvodu se doporučuje provádět rtg vyšetření srdce a plic v zadopřední projekci, nikoliv v předozadní?
a) Aby pacient neviděl rentgenku a neleknul se jí
b) Aby se zmenšila dávka na prsní tkáň
c) Aby byl menší srdeční stín
d) Aby se zmenšila dávka na prsní tkáň a taktéž srdeční stín je menší

Q22: CT výkony představují pouze asi 8% z celkového počtu provedených rtg výkonů. Jakou část z kolektivní dávky však zabírají?
a) 20%
b) 30%
c) 40%
d) 50%

Q23: S použitím orgánové modulace proudu na CT je možné při CT vyšetření hrudníku šetřit dávku na prsní tkáň pacientek. Který orgán však obdrží při tomto CT vyšetření vyšší dávku?
a) Štítná žláza
b) Oční čočka
c) Plíce
d) Tlusté střevo

Q24: Existuje několik způsobů, kterými lze snížit dávku radiosenzitivním orgánům při CT vyšetření. Který způsob je podle publikovaných studií a různých doporučení nejefektivnější?
a) Použití bizmutového stínění
b) Použití orgánové modulace proudu
c) Snížení proudu
d) Kombinace bizmutového stínění a orgánové modulace proudu

Q25: Nechť je AP průměr prozařovaného objemu pacienta 20 cm a kermový příkon na vstupu do pacienta odpovídá 1. O kolik vzroste kermový příkon na vstupu, vzroste-li AP průměr pacienta o 3 cm?
a) O 100%
b) O 200%
c) O 300%
d) O 400%

Q26: O kolik se zvýší kermový příkon na vstupu do pacienta ve srovnání s původní hodnotou, vzroste-li průměr pacienta o další 3 cm (AP průměr 26 cm)?
a) O 100%
b) O 200%
c) O 300%
d) O 400%

Q27: Jaký úhel svírá rtg svazek na multidetektorovém CT v axiální rovině pacienta?
a) 10-20°
b) 20-30°
c) 50-60°
d) 60-80°

Q28:  Jaký úhel svírá rtg svazek na multidetektorovém CT v podélné rovině pacienta?
a) 10-20°
b) 20-30°
c) 50-60°
d) 60-80°

Q29: Použití helikálního náběru dat na CT zlepšuje:
a) Dobu vyšetření
b) Kvantový šum
c) Prostorové rozlišení
d) Rozlišení kontrastu

Q30: Který z následujících orgánů nepatří k těm nejvíce radiosenzitivním v lidském těle?
a) Tlusté střevo
b) Žaludek
c) Plíce
d) Gonády

Odpovědi:
A1: b) Hmotnosti, absorbovaná dávka je definována jako podíl sdělené energie určitému objemu a hmotnosti tohoto objemu
A2: c) Sv
A3: a) 1
A4: c) 10 mSv, protože radiační váhový faktor je roven 1
A5: d) Plochou rtg svazku
A6: a) Ionizační komora
A7: b) 87 mGy/min
A8: b) 5 min
A9: d) Není daný, žádná výstraha u akvizic není povinná
A10: b) Gy*cm2
A11: c) 1,4
A12: b) 1,1
A13: c) Napětí
A14: b) 16 cm
A15: c) 1/pitch faktor
A16: a) CTDI_vol(16 cm) = 2x CTDI_vol(32 cm)
A17: c) Pro pitch faktor = 1,0
A18: a) mGy
A19: b) mGy*cm
A20: c) 0,50 mm Pb
A21: d) Aby se zmenšila dávka na prsní tkáň a taktéž srdeční stín je menší
A22: d) 50%, přestože je to jen 8% z celkového počtu výkon, tak zaujímají téměř 50% z kolektivní dávky
A23: c) Plíce
A24: c) Snížení proudu
A25: a) O 100%
A26: c) O 300%
A27: c) 50-60°
A28: a) 10-20°, některá CT s malým počtem řad detektorů i pod 5°
A29: a) Dobu vyšetření
A30: d) Gonády

Kvíz X

Otázky:
(otázky se týkají modality CT)

Q1: Jaká je hlavní limitace skiagrafie (2D zobrazení)?
a) Superpozice struktur
b) Chabé prostorové rozlišení
c) Nedostatečný kontrast
d) Velké množství šumu

Q2: Kolik projekcí, resp. profilů zeslabení, je nebráno v rámci jedné rotace rentgenky okolo pacienta?
a) 10
b) 100
c) 1 000
d) 10 000

Q3: U rekonstrukce CT obrazu zpětnou projekcí jsou hodnoty zeslabení v jednotlivých řádcích (sloupcích) rozděleny:
a) Rovnoměrně
b) Logaritmicky
c) Exponenciálně
d) Náhodně

Q4: Současné CT skenery rekonstruují výsledný obraz nejčastěji použitím:
a) Zpětné projekce
b) Filtrované zpětné projekce
c) Iterativní rekonstrukce
d) Algebraické rekonstrukce

Q5: Hlavní limitací CT iterativní rekonstrukce je:
a) Nutnost dostatečně výkonného počítače pro zpracování dat
b) Špatné prostorové rozlišení
c) Příliš mnoho artefaktů
d) Příliš velký šum

Q6: Jaký je standardní rozměr matice CT obrazu?
a) 128 x 128
b) 256 x 256
c) 512 x 512
d) 1024 x 1024

Q7: Jaký je objem pixelu o velikosti 0,5 mm x 0,5 mm a tloušťce řezu 10 mm?
a) 0,1 mm3
b) 0,25 mm3
c) 1,0 mm 3
d) 2,5 mm3

Q8: Jaká je přibližná velikost pixelu, je-li velikosti pole zájmu (field of view, FoV) 50 cm?
a) 0,25 mm
b) 0,5 mm
c) 1,0 mm
d) 2,0 mm

Q9: Čemu odpovídá CT číslo vody?
a) -1000 HU
b) 0 HU
c) 100 HU
d) 1000 HU

Q10: Kernel pro rekonstrukci kostí zvýrazní v obraze:
a) Detaily
b) Šum
c) Kontrast
d) Artefakty

Q11: Krenel pro rekonstrukci měkkých tkání zvýrazní v obraze:
a) Detaily
b) Šum
c) Kontrast
d) Artefakty

Q12: Bitová hloubka CT obrazu je nejčastěji:
a) 4
b) 8
c) 12
d) 16

Q13: Bude-li šířka okna (WW) 1000, střed okna (WL) 0, pixel s kterou hodnotou se zobrazí jako černý?
a) -500
b) 0
c) 500
d) 1000

Q14: Nejčastěji používaná hodnota napětí při CT vyšetření je:
a) 45 kV
b) 75 kV
c) 120 kV
d) 150 kV

Q15: Nejpravděpodobnější hodnota proudu při CT vyšetření je:
a) 0,3 mA
b) 3 mA
c) 30 mA
d) 300 mA

Q16: Nejpravděpodobnější doba rotace rentgenky při CT vyšetření je:
a) 0,1 s
b) 0,5 s
c) 1,0 s
d) 2,0 s

Q17: Čemu je ekvivalentní celková filtrace rtg svazku na CT?
a) 0,5-1,0 mm Al
b) 1-2 mm Al
c) 3-4 mm Al
d) více než 5 mm Al

Q18: Jaká je nejpravděpodobnější šířka svazku u 64-řadého CT?
a) 0,4 mm
b) 4 mm
c) 40 mm
d) 400 mm

Q19: Jaká je nejpravděpodobnější šířka jednoho detekčního elementu na CT?
a) 0,1 mm
b) 0,2 mm
c) 0,5 mm
d) 2 mm

Q20: Jaká je detekční účinnost CT detektoru?
a) 5 %
b) 25 %
c) 50 %
d) 90 %

Q21: Jaké je přibližně celkové množství detekčních elementů 128-řadého CT?
a) 128 * 10
b) 128 * 100
c) 128 * 800
d) 128 * 2000

Q22: Mis-centering neboli špatná centrace pacienta na CT ovlivňuje kvalitu obrazu i dávku, kterou pacient obdrží. Ke kterému jevu dochází při špatné centraci, kdy je pacient centrován pod izocentrum, tj. dále od rentgenky než do izocentra?
a) Dávka je vyšší, kvalita je lepší
b) Dávka je vyšší, kvalita je horší
c) Dávka je nižší, kvalita je lepší
d) Dávka je nižší, kvalita je horší

Q23: Jaká je optimální hodnota napětí pro zobrazení s jodovou kontrastní látkou?
a) 80 kV
b) 100 kV
c) 120 kV
d) 140 kV

Q24: Při jaké hodnotě napětí dochází nejvíce k potlačení kovových artefaktů v CT obraze?
a) 80 kV
b) 100 kV
c) 120 kV
d) 140 kV

Q25: Jak se nazývá jev, kdy je nutné pro rekonstrukci okrajových řezů na CT naskenovat oblast delší, než je skutečná oblast zájmu?
a) Overbeaming
b) Overscanning
c) Overranging
d) Overreconstruction

Q26: Při vyšetření které oblasti je mnohem výhodnější automatická modulace proudu než fixně nastavená hodnota proudu?
a) Hlava + krk
b) Krk + hrudník
c) Hrudník + břicho
d) Břicho + pánev

Q27: Který z následujících názvů nepopisuje stejnou techniku náběru dat na CT?
a) Axiální skenování
b) Sekvenční skenování
c) Helikální skenování
d) Technika „step-and-shoot“

Q28: Materiál pacientského stolu byl zvolen tak, aby vydržel dostatečnou zátěž, ale současně tak, aby co nejméně zeslaboval záření. Ze kterého materiálu je stůl vyroben?
a) Uhlíková vlákna
b) Plexisklo
c) Odlehčený hliník
d) Nerezová ocel

Q29: Při lokalizačním skenu na CT platí, že:
a) Rentgenka zůstává po celou dobu ve stejné pozici
b) Rentgenka rotuje velmi pomalu
c) Rentgenka nemůže být v boční pozici vzhledem k pacientovi
d) Rentgenka pro lokalizační sken a pro náběr tomografických dat se od sebe liší

Q30: Jaký je benefit rychlejšího náběru dat pro rekonstrukci CT obrazu?
a) Menší zatížení ohniska
b) Menší dávka pacientovi
c) Menší pohybová neostrost
d) Lepší prostorové rozlišení

Odpovědi:
A1: a) Superpozice struktur
A2: c) 1 000
A3: a) Rovnoměrně
A4: b) Filtrované zpětné projekce, ale častá je i možnost c) Iterativní rekonstrukce
A5: a) Nutnost dostatečně výkonného počítače pro zpracování dat
A6: c) 512 x 512
A7: d) 2,5 mm3
A8: c) 1,0 mm
A9: b) 0 HU
A10: a) Detaily, ale bohužel tím nepříznivě narůstá i šum
A11: c) Kontrast
A12: c) 12
A13: a) -500
A14: c) 120 kV
A15: d) 300 mA
A16: b) 0,5 s
A17: d) více než 5 mm Al
A18: c) 40 mm
A19: c) 0,5 mm
A20: d) 90 %
A21: c) 128 * 800
A22: d) Dávka je nižší, kvalita je horší
A23: a) 80 kV
A24: d) 140 kV
A25: b) Overscanning, někdy označovaný i jako c) Overranging
A26: b) Krk + hrudník
A27: c) Helikální skenování
A28: a) Uhlíková vlákna
A29: a) Rentgenka zůstává po celou dobu ve stejné pozici
A30: c) Menší pohybová neostrost

Preprocessing rtg obrazů

Digitální detektor disponuje v prvním kroku hrubými daty (raw data), která nejsou pro lékaře diagnostikovatelná. Tato data je potřeba nejprve předzpracovat, je nutné provést preprocessing. Do preprocessingu patří korekce obrazu na odezvu detektoru, elektronická kolimace, korekce ve frekvenční doméně a aplikace tzv. look-up table. Nyní podrobněji k jednotlivým korekcím.

Korekce obrazu na odezvu detektoru
Digitální detektor neposkytuje perfektně uniformní odezvu. Neuniformity tvoří strukturní šum, který může být korigován použitím korekčních map.

1) Offset: V každé elektronice se generuje tzv. temný šum, např. v důsledku zahřívání, který je přítomný i bez přítomnosti rtg záření. Při korekci se zjistí korekční mapa, která odpovídá odezvě každého pixelu bez přítomnosti rtg záření. Tato mapa je odečtena od hrubých dat.

2) Zisk detektoru (gain): Každý detektor může obsahovat nehomogenity, které vznikají např. v důsledku různé tloušťky scintilační vrstvy u digitálních detektorů s nepřímou konverzí. Korekce na zisk detektoru je provedena vydělením matice obrazu korekční maticí. Ta se zjistí jako průměrná odezva každého pixelu na homogenní ozáření. Tato korekce se často označuje jako flat field korekce.

3) Defekty pixelů: Každý digitální detektor může obsahovat nefunkční pixely, které neposkytují odezvu na signál, tzv. mrtvé pixely. Může se jednat o jednotlivé pixely nebo také o celý řádek pixelů. Pro každý detektor je proto zjištěna mapa mrtvých pixelů. Signál těchto mrtvých pixelů je pak v rámci preprocessingu nahrazen průměrnou odezvou okolních pixelů, aby v obraze nepůsobily tyto mrtvé pixely rušivým dojmem. Dle publikovaných studií může být počet mrtvých pixelů až 10 000, což odpovídá cca 0,3%. Nicméně detekční kvantová účinnost není těmito mrtvými pixely nijak výrazně ovlivněna.

Elektronická kolimace
Některé systémy v rámci preprocessingu provádějí automatickou detekci rtg pole, tj. softwarově naleznou hrany rtg pole. Oblast za hranou rtg pole je většinou nahrazena signálem odpovídajícím černým pixelům, aby signál za hranami rtg pole nepůsobil rušivým dojmem. Tento krok preprocessingu může být k dispozici i na některých CR systémech.

Korekce ve frekvenční doméně
Korekce ve frekvenční doméně obrazu, kterou lze získat Fourierovou transformací hrubých dat, se používají pro zvýraznění některé informace v obraze. Žádná z korekcí nemůže do obrazu přidat novou informaci, ale může zvýraznit nebo potlačit některou stávající. Korekce ve frekvenční doméně probíhají např. použitím nízkofrekvenčních (low-pass) nebo vysokofrekvenčních (high-pass) filtrů. Low-pass filter propouští nízké frekvence, odfiltruje tedy vysoké frekvence, které odpovídají detailům, ale také šumu. Použitím low-pass filtru lze tedy potlačit šum. Naopak použitím high-pass filtru lze zvýraznit vysoké frekvence, které odpovídají detailům.

Ve frekvenční doméně se provádí také další typy operací, např. odstranění protirozptylové mřížky z obrazu.

Aplikace look-up table
Look-up table (LUT) konvertuje hodnotu každého pixelu na novou hodnotu. Obvykle z toho důvodu, že samotná data mají větší bitovou hloubku, než jakou jsme schopni zobrazit. Proto je výsledný signál každého pixelu konvertován tak, aby byla pokud možno zobrazena pouze relevantní informace. Konverze signálu pixelu není lineární, je uzpůsobena každému typu zobrazení zvlášť. Často je pro konverzi využívána S-křivka.

Při kontrole kvality detektoru se využívá korekce na mrtvé pixely, korekce na offset i flat field korekce. Nicméně korekce ve frekvenční doméně by měly být vypnuty.

Použitá literatura:
Mackenzie A. Přednášky z projektu EUTEMPE-RX. Module 07 – Optimization of X-ray imaging using standard and innovative techniques. 20.-23.10.2015, Guildford, UK

Kvíz IX

Otázky:
Q1: Seřaďte prostorové rozlišení následujících zobrazovacích modalit od nejlepšího po nejhorší: CT, mamografie, MR, skiagrafie, ultrazvuk.
a) MR, mamografie, skiagrafie, CT, ultrazvuk
b) Mamografie, skiagrafie, CT, MR, ultrazvuk
c) CT, mamografie, skiagrafie, ultrazvuk, MR
d) CT, MR, mamografie, skiagrafie, ultrazvuk

Q2: Scintilační materiál detektorů s nepřímou konverzí konvertuje:
a) Energii rtg fotonů na proud
b) Energii rtg fotonů na fotony ultrafialového světla
c) Energii rtg fotonů na fotony viditelného světla
d) Energii fotonů viditelného světla na rtg fotony

Q3: S rostoucím protonovým číslem Z materiálu, ve kterém záření interaguje, se zastoupení fotoelektrického jevu:
a) Zvyšuje
b) Nemění
c) Snižuje
d) Různě v závislosti na konkrétním materiálu

Q4: Je-lie dávka na vstupu pacienta při rtg vyšetření 2 mGy, jak velká je přibližně dávka na výstupu pacienta?
a) 2 mGy
b) 1,2 mGy
c) 0,2 mGy
d) 0,02 mGy

Q5: Co je hlavní nevýhodou skiagrafických vyšetření?
a) Zdlouhavá doba vyšetření
b) Příliš velká dávka pacientovi
c) Anatomický šum
d) Špatná dostupnost vyšetření

Q6:Které z následujících vyšetření neposkytuje obraz celé čelisti?
a) Intraorální
b) Ortopantomografické
c) Panoramatické
d) Cone-beam CT

Q7: S vyšší hodnotou napětí narůstá:
a) Prostupnost vznikajících rtg fotonů
b) Efektivita tvorby rtg fotonů (vzniká více fotonů)
c) Maximální energie v rtg spektru
d) Všechny z možností

Q8: Kde nachází cone-beam CT v dentální radiologii hlavní uplatnění?
a) Při běžném zobrazení zubů
b) Při nedostupnosti intraorálního rtg
c) V rekonstrukční stomatologii a při výrobě různých implantátů
d) Všechny z možností

Q9: Uspořádajte efektivní dávky z jednotlivých dentálních vyšetření od nejnižší po nejvyšší: Intraorální, panoramatické, cone-beam CT.
a) Intraorální, panoramatické, cone-beam CT
b) Cone-beam CT, panoramatické, intraorální
c) Panoramatické, intraorální, cone-beam CT
d) Intraorální, cone-beam CT, panoramatické

Q10: U kterého CT vyšetření se při rekonstrukci přednostně využívá vyhlazovacího filtru pro redukci šumu?
a) CT jater
b) CT bederní páteře
c) CT aortografie
d) CT plic

Q11: Které z následujících tvrzení není pravdivé? Dopadající a vstupní povrchová kerma se od sebe liší:
a) Nijak, jedná se o dva názvy pro tutéž veličinu
b) Zpětným rozptylem
c) Nepřítomností a přítomností pacienta
d) Dopadající kerma je menší než vstupní povrchová kerma

Q12: Která veličina vyjadřuje celkové množství záření vyprodukované při CT vyšetření?
a) CTDI_w
b) CTDI_vol
c) Součin kermy a délky P_KL
d) Součin kermy a plochy P_KA

Q13: Který z uvedených orgánů má nejnižší radiosenzitivitu?
a) Prsní tkáň
b) Plíce
c) Tlusté střevo
d) Gonády

Q14: Která z uvedených veličin není přímoměřitelná?
a) Součin kermy a plochy
b) Střední dávka v mléčné žláze
c) Dopadající kerma
d) Vstupní povrchová kerma

Q15: Která/které veličiny jsou nejvhodnější pro porovnání radiační zátěže z různých zobrazovacích modalit?
a) Orgánové dávky
b) Efektivní dávka
c) Součin kermy a plochy
d) CTDI_vol

Q16: Jaká část všech poškození způsobených ionizujícícm zářením je opravena reparačními mechanizmy buňky?
a) Téměř 70 %
b) Téměř 80 %
c) Téměř 90 %
d) Téměř 100 %

Q17: Na základě čeho byla primárně stanovena radiosenzitivita jednotlivých tkání?
a) Pacienti podstupující radioterapii
b) Přeživší v Černobylu
c) Přeživší v Hiroshimě a Nagasaki
d) Přeživší ve Fukushimě

Q18: Ve kterém období je plod nejnáchylnější ke vzniku malformací centrální nervové soustavy v souvislosti s ozářením plodu vyššími dávkami?
a) 0. – 2. týden vývoje
b) 3. – 8. týden vývoje
c) 9. – 15. týden vývoje
d) 16. – 25. týden vývoje

Q19: Ve kterém období je plod nejnáchylnější ke vzniku mentální retardace v souvislosti s ozářením plodu vyššími dávkami?
a) 0. – 2. týden vývoje
b) 3. – 8. týden vývoje
c) 9. – 15. týden vývoje
d) 16. – 25. týden vývoje

Q20: Ve kterém období je plod nejnáchylnější k poklesu IQ v souvislosti s ozářením plodu vyššími dávkami?
a) 0. – 2. týden vývoje
b) 3. – 8. týden vývoje
c) 9. – 15. týden vývoje
d) 16. – 25. týden vývoje

Q21: Je možné provést plánovaný rtg výkon u pacientky, uvede-li, že je těhotná?
a) Ano, bez ohledu na její těhotenství
b) Ano, bez ohledu na její těhotenství, ale musí podepsat souhlas
c) Ano, ale v závislosti na výkonu
d) Ne, v žádném případě

Q22: Efektivita ochranného stínění je nejvyšší pro:
a) Nízké energie fotonů
b) Střední energie fotonů
c) Vysoké energie fotonů
d) Stejná pro všechny energie fotonů

Q23: Který způsob redukce dávky na oční čočku při CT vyšetření mozku je nejefektivnější (efektivitou je myšleno snížení dávky a minimum artefaktů)?
a) Použití bismutového stínění v primárním rtg svazku
b) Orgánová modulace proudu
c) Snížení proudu rentgenky
d) Všechny možnosti jsou srovnatelné

Q24: Do jaké vzdálenosti od primárního rtg svaku je použití ochranného stínění ještě efektivní?
a) Do vzdálenosti 5 cm
b) Do vzdálenosti 10 cm
c) Do vzdálenosti 20 cm
d) V jakékoliv vzdálenosti

Q25: Doporučuje se použití ochranného stínění štítné žlázy v mamografii?
a) Ano, použití je vhodné vždy
b) Ano, pokud si to pacientka vyžádá
c) Ano, pokud to doporučí radiologický asistent
d) Ne, stínění může zabránit získání dostatečné diagnostické informace

Q26: Co přispělo velmi významně ke snížení osobních dávek lékařů provádějících intervenční výkony?
a) Standardní umístění rentgenky pod vyšetřovacím stolem a receptoru obrazu nad ním
b) Zavedení ochranných prostředků
c) Zavedení pulzní skiaskopie
d) Zavedení digitálních detektorů

Q27: Která z následujících možností nepředstavuje způsob, jak lze snížit osobní dávky lékařů provádějících intervenční výkony?
a) Odstínit rozptýlené záření z pacienta použitím stínících roušek
b) Redukovat použití akvizic
c) Použít angiografický injektor při akvizici
d) Použít zoom

Q28: Který typ katarakty je spojen s ozářením oční čočky ionizujícím zářením především?
a) Nukleární katarakta
b) Kortikální katarakta
c) Posteriorní subkapsulární katarakta
d) Všechny tři druhy se vyskytují se stejnou mírou

Q29: V jakém formátu jsou standardně uchovávána data v PACS systémech?
a) DICOM
b) JPG
c) BMP
d) TIFF

Q30: Elektronický šum má svůj původ:
a) Ve statistickém charakteru distribuce detekovaných fotonů
b) V samotné elektronice při jejím zahřívání
c) V různé citlivosti každého detekčního elementu
d) V nežádoucích anatomických oblastech v obraze

Odpovědi:
A1: b) Mamografie, skiagrafie, CT, MR, ultrazvuk
A2: c) Energii rtg fotonů na fotony viditelného světla
A3: a) Zvyšuje
A4: d) 0,02 mGy
A5: c) Anatomický šum
A6: a) Intraorální
A7: d) Všechny z možností
A8: c) V rekonstrukční stomatologii a při výrobě různých implantátů
A9: a) Intraorální, panoramatické, cone-beam CT
A10: a) CT jater
A11: a) Nijak, jedná se o dva názvy pro tutéž veličinu
A12: c) Součin kermy a délky P_KL
A13: d) Gonády
A14: b) Střední dávka v mléčné žláze
A15: b) Efektivní dávka
A16: d) Téměř 100 % (ve skutečnosti 99,999 % poškození)
A17: c) Přeživší v Hiroshimě a Nagasaki
A18: b) 3. – 8. týden vývoje
A19: c) 9. – 15. týden vývoje
A20: c) 9. – 15. týden vývoje
A21: c) Ano, ale v závislosti na výkonu. Rtg výkony mimo oblast břicha a pánve lze provádět bez omezení, ale pozor na psychologický efekt na pacientku
A22: a) Nízké energie fotonů
A23: c) Snížení proudu rentgenky. Orgánová modulace proudu je také velmi vhodná, ale není běžně používána a není dostupná na všech CT skenerech
A24: a) Do vzdálenosti 5 cm. Nachází-li se orgán, který chceme stínit poocí ochranného stínění, ve vzdálenosti větší než 5 cm od primárního rtg svazku, nemá použití stínění z fyzikálního hlediska význam. U některých pacientů však může mít psychologick efekt.
A25: d) Ne, stínění může zabránit získání dostatečné diagnostické informace. V horším případě je nutné expozici opakovat.
A26: a) Standardní umístění rentgenky pod vyšetřovacím stolem a receptoru obrazu nad ním. V dřívějších dobách se pro záznam výkonu používaly filmy, který se velmi ryhcle měnily. Celé toto zařízení bylo příliš velké a těžké, aby mohlo být umístěno nad vyšetřovací stůl. Ke změně však došlo zavedením nové technologie – zesilovač obrazu, která již umožnila umístit receptor obrazu nad vyšetřovací stůl.
A27: d) Použít zoom
A28: c) Posteriorní subkapsulární katarakta
A29: a) DICOM
A30: b) V samotné elektronice při jejím zahřívání

Je lepší CsI nebo GOS flat panel detektor?

V posledních letech došlo k velkému rozšíření přímé digitalizace (ať s přímou nebo nepřímou konverzí, nepřímá konverze může probíhat ve strukturním nebo nestrukturním scintilátoru), která postupně nahrazuje CR technologii. V současné době jsou běžně dostupné digitální detektory s nepřímou konverzí, při které je nejprve energie rtg fotonů přeměněna pomocí scintilačního materiálu na fotony viditelného světla, které jsou poté detekovány fotodiodou, ve které je jejich energie konvertována na elektrický signál. Mezi vlastnosti, kterými se vyznačují scintilační materiály, patří možnost vytvořit velkou plochu (velikost dostatečná pro zobrazení velkoformátového rtg obrazu, např. snímek srdce a plic), velká světelná výtěžnost (konverze rtg fotonů na fotony viditelného světla) a dostatečné prostorové rozlišení. Jako scintilační materiál se nejčastěji využívá CsI:Tl (jodid cesný dopovaný thaliem) nebo Gd2O2S:Tb (oxysulfid gadolinia dopovaný terbiem, někdy označovaný jenom GOS nebo gadox). Ale jaký je rozdíl mezi těmito dvěma materiály detektorů z hlediska kvality obrazu a dávky?

Nejprve něco o každém z materiálů

GOS je granulový scintilační materiál, který je výborný pro zpracování a zacházení. Navíc je cenově dostupnější. Základním parametrem, který určuje vlastnost GOS detektoru je tloušťka dané scintilační vrstvy, která přímo souvisí s absorpcí záření. Čím větší tloušťka, tím větší absorpce, ale tím horší prostorové rozlišení.

CsI je scintilační materiál vyráběný s krystalickou strukturou (krystaly ve formě podlouhlých jehel, které zabraňují difuzi světelných fotonů do prostoru), takže dosahuje výborného prostorového rozlišení. Další výhodou tohoto materiálu je snadnost výroby detektoru, kdy je možné mírně zahřátý materiál (50-250°C) přímo nanést na materiál vyčítací matice, aniž by došlo k degradaci vlastností. V neposlední řadě je výhodou také spektrum emitovaných fotonů, které se velmi dobře absorbují v amorfním silikonu, který je součástí vyčítací matice. Navíc CsI materiál poskytuje největší světelný výtěžek ze všech známých scintilačních materiálů.

Nyní prakticky

Z hlediska dávky je výhodnější CsI materiál, protože pro vznik obrazu postačuje nižší dávka, přibližně o 10%. Není to mnoho, ale nižší dávka je nižší dávka.

Z hlediska kvality obrazu je výhodnější opět CsI, protože poskytuje ostřejší obraz. Rozdíl je však opět malý, pro netrénované oko nerozeznatelný.

Existuje ještě další hledisko, které ovlivňuje rozhodnutí, který detektor si pořídit, a to je cena. V tomto ohledu je jednoznačně výhodnější GOS, protože je o 20-30% levnější.

Takže souhrnem, z hlediska kvalitativního je určitě výhodnější CsI materiál, z hlediska cenového pak GOS. Takže záleží na každém konkrétním případu, pro který typ detektoru se uživatel rozhodne.

A ještě něco z technického hlediska

Ve srovnání s ostatními typy detektorů, nejen GOS, ale i CR, film-fólie, DR s přímou konverzí, vyniká CsI skvělou kvantovou detekční účinností DQE (detective quantum efficiency), která charakterizuje kvalitu detektoru z hlediska efektivity využití dopadajícího signálu pro tvorbu výstupního signálu, kterým je obraz. Modulační přenosová funkce charakterizující prostorové rozlišení je velmi podobná systému film-fólie.

Z hlediska dalších vlastností je CsI výhodnější díky vyššímu fill faktoru, který udává, jaká část z plochy každého detekčního elementu je aktivně využita k detekci záření, příčemž platí, že čím vyšší fill faktor, tím lépe. Část detekčního elementu, která se nevyužívá (neaktivní část), zaujímá elektronika, která umožňuje vyhodnocení signálu z daného elementu. Fill fakto pro CsI se pohybuje v rozmezí 70-90%, zatímco pro GOS se pohybuje okolo 50-60%. Velikost neaktivní části detekčního elementu se s různou velikostí detekčního elementu nemění, proto platí, že čím menší detekční element, tím menší fill faktor, neboli tím procentuálně větší část zaujímá elektronika daného detekčního elementu.

Taktéž publikace [7] potvrdila, že CsI materiál je kvalitativně nadřazený materiálu GOS, kvalita obrazu (ve studii popisována prostorovým rozlišením na CDRAD fantomu, tj. nejedná se o klinický obraz) je o pro CsI o třetinu až polovinu lepší než pro GOS. Materiál GOS poskytuje i při vyšších dávkách téměř stejnou kvalitu obrazu, zatímco pro CsI se kvalita obrazu s rostoucí dávkou zvyšuje. Nevýhodou CsI materiálu v souvislosti s rostoucí dávkou je rostoucí směrodatná odchylka signálu homogenně ozářeného detektoru. U GOS detektoru není nárůst směrodatné odchylky patrný, avšak i tak je kvalita obrazu CsI nadřazená kvalitě obrazu GOS.

Použitá literatura
[1] Lanca L, Silva A. Digital imaging systems for plain radiography. Springer Science+Business Media, New York, 2013
[2] Kim HK, Cunningham IA, Yin Z, Cho G. On the development of digital radiography detectors: A review. International Journal of Precision Engineering and Manufacturing 2008; 9(4): 86-100
[3] https://info.blockimaging.com/gadox-vs.-cesium-dr-panel-comparison
[4] http://www.aapm.org/meetings/05AM/pdf/18-2623-22086-53.pdf
[5] http://www.ndt.net/article/wcndt00/papers/idn421/idn421.htm
[6] Aksoy ME, Kamasak ME, Akkur E, Ucgul A, Basak M, Alaca H. Evaluation and comparison of image quality for indirect flat panel systems with CsI and GOS scintillators. Health Informatics and Bioinformatics (HIBIT) 2012, 7th International Symposium on Health Informatics and Bioinformatics

5. narozeniny webu

Dobrý den,

ráda bych Vám, všem čtenářům, poděkovala za návštěvy na webu www.sukupova.cz, který v těchto dnech oslaví páté narozeniny. Díky :).

Web vznikl na popud lidí okolo mě, kteří se mě často ptali, co znamená vyšetření v tunelu. Takže prvním článkem logicky musel být článek o vyšetření v tunelu :). Poté jsem psala o různých tématech z oblasti radiodiagnostiky, ať už o radiační ochraně nebo o technických aspektech rtg zobrazování. Celkem bylo za těch 5 let na webu uveřejněno 223 příspěvků.

Na web chodí nejčastěji lidé, kteří se učí na různé zkoušky a atestace, především radiologičtí asistenti a radiologové. Mimo ty však i moji kolegové – radiologičtí fyzici, ale i lidé z různých institucí, kteří hledají detailnější informace o zobrazování. A v nemalé míře pak i lidé, kteří hledají informace o ozáření z důvodů obav, typicky těhotné ženy po rtg nebo CT vyšetření a maminky dětí, kterých se týkají rtg vyšetření. Tu a tam přijdou i nějaké dotazy, na které se snažím samozřejmě co nejdříve odpovědět.

Počet návštěv za těch 5 let je vyšší než 80 tisíc, přičemž návštěv za první rok bylo přibližně 4,5 tisíce, zatímco poslední rok už to bylo více než 25 tisíc. Nejčastěji se jednalo o čtenáře z České republiky (87% návštěv), dále pak ze Slovenska (7%), Brazílie (1%), Německa (1%) a USA (1%).

Nejčastěji hledaná klíčová slova jsou následující (v pořadí, jak mi je poskytl analytický nástroj):

  • Rentgenka
  • Stochastické účinky
  • CT hrudníku
  • Akutní nemoc z ozáření
  • Lucie Súkupová :)
  • Kostní denzitometrie
  • Nemoc z ozáření
  • Deterministické účinky
  • Cena CT vyšetření a různé modifikace těchto slov byly na dalších asi 6 místech v seznamu.

Přiznávám, že občas mi dochází nápady o čem psát, proto uvítám, když mi klidně napíšete, jaké téma by Vás zajímalo nebo jaké téma byste uvítali.

Ještě jednou děkuji, že chodíte na tento web, velmi mě těší, že Vás téma zajímá.

Přeji krásné léto. Lucie Súkupová