Princip photon-counting detektorů používaných na CT (1)

Základní součástí CT s photon-counting detektory, které se označuje také jako spektrální CT, je detektor, který dokáže rozeznat a počítat rtg fotony různých energií. Prozatím se u všech výrobců jednalo o polovodičový detektor pracující ve spektrálním módu. Proč to ale je u všech výrobců polovodičový detektor a nevyužívají se např. scintilační detektory? To a spousta dalšího, bude řečeno v tomto a několika dalších příspěvcích, které jsou zaměřené na objasnění principu photon-counting detektorů a v čem jsou tyto detektory výhodné při CT zobrazení [1]. Tímto tématem jsem se zabývala vícekrát již dříve, takže něco bude spíše opakování, ale přidám také další informace.

Proč je dobré odlišit rtg fotony různých energií?

Představme si následující situaci: Chceme si koupit rajčata. V obchodě jsou nabízena rajčata různých velikostí, od velkých nepříliš chutných až po malá cherry rajčata (obr. 1), která jsou často velmi chutná. Právě proto je jejich cena častokrát vyšší než těch velkých. Budeme-li kupovat všechna rajčata dohromady, bude výsledná váha a také chuť podstatně převážena těmi velkými, nepříliš chutnými, rajčaty.

Obr. 1: Velká a malá rajčata dohromady

Řešením by bylo rozdělit tato rajčata podle velikosti na velká a malá rajčata, jak je uvedeno na obr. 2. Tím bychom dostali skupinu těch užitečných neboli chutných rajčat a skupinu těch nepříliš užitečných.

Obr. 2: Rozdělení rajčat na velká (vlevo) a malá (vpravo)

Nyní mějme rtg fotony různých energií. Nechť velká rajčata odpovídají rtg fotonům vyšších energií, malá rajčata rtg fotonům nižších energií. Ze závislosti kontrastu měkkých tkání (definované jako rozdíl v CT číslech dvou tkání), zde měkké tkáně a tuku, na energii rtg fotonů je zřejmé, že čím nižší je energie rtg fotonů, tím lepší je kontrast v CT obraze, resp. obecně v rtg zobrazení. Závislost je znázorněna na obr. 3 společně s odpovídajícím umístěním velkých a malých rajčat.

Obr. 3: Rozdíl v CT číslech neboli kontrast mezi měkkou tkání a tukovou tkání v závislosti na energii (X-Ray Mass Attenuation Coefficients | NIST)

Z obr. 3 je zřejmé, že rtg fotony nižších energií (malá rajčata) jsou pro CT obraz velmi užitečné, protože nesou informaci o kontrastu, zatímco rtg fotony vyšších energií (velká rajčata) informaci o kontrastu nenesou, v obrazu představují neužitečný signál.

Energii-integrující detektor a photon-counting detektor

Mějme klasický energii-integrující detektor (EID), který se standardně na CT využívá. Odezva EID na absorbovaný foton je úměrná energii tohoto fotonu. Čím nižší energii má absorbovaný foton, tím je odezva detektoru nižší a naopak. Grafické znázornění je uvedeno na obr. 4.

Obr. 4: Závislost odezvy EID na energii absorbovaného rtg fotonu (hodnota na ose Y není podstatná, jedná se o tvar závislosti)

To by samo o sobě ještě nebylo nic špatného, avšak při detekci rtg fotonů EID dochází k tomu, že v jednom detekčním elementu jsou absorbovány statisíce až miliony rtg fotonů, avšak integrálně – všechny dohromady. Tedy EID neodkáže rozlišit fotony různých energií, prostě veškerou absorbovanou energii sečte, a to je jeho výsledná odezva. Sečte tak odezvu rtg fotonů nižších energií (naše malá cherry rajčata), ale i vyšších, přičemž samozřejmě energie rtg fotonů vyšších energií převáží energii rtg fotonů nižších energií. Představme si tu situaci, kdy jeden rtg foton o energii 90 keV má stejnou energii jako tři rtg fotony o energii 30 keV, přičemž právě tyto nižší energie nesou informaci o signálu. Výsledná odezva daného detekčního elementu je úměrná celkové absorbované energii, větší vliv tedy mají rtg fotony vyšších energií.

Nezanedbatelný příspěvek k výslednému signálu u EID má také šum, což je signál vznikající v elektronice při jejím zahřívání. To je také jedním z limitujících faktorů pro nízkodávková CT vyšetření, protože jakmile je detekovaný signál v detekčním elementu převážen šumem, vznikající obraz nebude mít dostatečnou diagnostickou kvalitu.

Mějme nyní photon-counting detektor (PCD) neboli detektor umožňující rozlišit jednotlivé rtg fotony různých energií. Odezva PCD nezávisí na energii absorbovaného fotonu, viz obr. 5. Zjednodušeně řečeno, ať je absorbován rtg foton o energii 30 keV nebo 90 keV, PCD dá odezvu „jeden foton“. Takže se použitím PCD dostáváme od integrálního vyhodnocení k vyhodnocení jednotlivých rtg fotonů. Navíc PCD umožňuje zvolit si rozsah energií rtg fotonů, které mají být brány v potaz. Proto může být rovnou zanedbán šum. Obvykle se jedná o rtg fotony o energiích nižších než cca 20 keV [2], které tedy nejsou vůbec uvažovány.

Obr. 5: Odezva PCD v závislosti na energii absorbovaného rtg fotonu (hodnota na ose Y není podstatná, jedná se o tvar závislosti)

Tím, že PCD dokáže odlišit rtg fotony různých energií, nedochází k neúměrnému vážení rtg fotonů nižších energií, jako tomu bylo u EID. Signál rtg fotonů nižších energií se uplatňuje stejně jako signál rtg fotonů vyšších energií, což vede k získání lepšího kontrastu ve vznikajícím obraze ve srovnání s EID. Takže i když bude v některém detekčním elementu detekován stejný počet rtg fotonů jako v jiném, je možné na základě energií rtg fotonů odlišit, o jaký materiál se jedná.

PCD však neposkytuje plnou spektrální informaci, tj. úplné spektrum jako u klasické spektrometrie, ale rozděluje absorbované rtg fotony do energetických košů neboli energetických binů. Většinou jde o dva energetické biny, jeden pro nízkoenergetické fotony, druhý pro vysokoenergetické fotony. Práh mezi nízkoenergetickým a vysokoenergetickým binem se může pro každý mód/CT skener/výrobce lišit, avšak z publikované literatury vyplývá, že pro dva energetické biny se práh pohybuje okolo 60-65 keV. Avšak může jít také o rozdělení do čtyř energetických binů s prahovými hodnotami např. 30, 45, 65 a 90 keV nebo o rozdělení až do osmi energetických binů [3]. Otázkou ale zůstává, jestli tolik energetických binů má ještě smysl. Obvykle se pro diagnostické CT zobrazení doporučuje použití dvou až čtyř energetických binů.

Příští příspěvek bude věnovaný EID a PCD detailněji.

Použitá literatura
[1] Li K. Basic principles of photon-counting CT. Annual Meeting of Radiological Society of North America. 29. 11. 2023, Chicago
[2] Flohr T, Schmidt B. Technical Basics and Clinical Benefits of Photon-Counting CT. Invest Radiol. 2023;58(7):441-450. doi:10.1097/RLI.0000000000000980
[3] Nakamura Y, Higaki T, Kondo S, Kawashita I, Takahashi I, Awai K. An introduction to photon-counting detector CT (PCD CT) for radiologists. Jpn J Radiol. 2023;41(3):266-282. doi:10.1007/s11604-022-01350-6
[4] Taguchi K, Blevis I, Iniewski K. Spectral, Photon Counting Computed Tomography: Technology and Applications. ISBN 9780429486111, CRC Press 2020

Napsat komentář

Vaše e-mailová adresa nebude zveřejněna. Vyžadované informace jsou označeny *